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EXECUTIVE SUMMARY 
 

 

As international trade and freight volumes increase, there is a growing port congestion problem, 

leading to the long truck queues at US marine terminal gates. To address this problem, some 

countermeasures have been proposed and implemented for reducing truck queue length at marine 

terminals. To assess the effectiveness of these countermeasures, a method for accurately 

estimating terminal gate truck queue length is needed.  

This study developed a new method, named the state-dependent approximation method, 

for estimating the truck queue length at marine terminals. Based on the simulation of the truck 

queuing system, it was found that it takes several hours for the truck queue length to reach its 

steady-state, and neglecting the queue formation (queue dispersion) processes will cause 

overestimation (underestimation) of truck queue length. The developed model can take into 

account the queue formation and dispersion processes, and it can be used to estimate the truck 

queue length caused by short-term oversaturation at marine terminals. For model evaluation, a 

simulation-based case study was conducted to evaluate the prediction accuracy of the developed 

model by comparing its results with the simulated queue lengths and the results of other four 

existing methods, including the fluid flow model, the M/M/S queuing model, and a simulation-

based regression model developed a previous study. The evaluation results indicate that the 

developed model outperformed the other four modeling methods for different states of queue 

formation and dispersion processes.  In addition, this new method can accurately estimate the 

truck queue length caused by the short-term system oversaturation during peak hours.  Therefore, 

it will be useful for assessing the effectiveness of the countermeasures that are targeted at 

reducing the peak-hour congestion at marine terminals. 
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Chapter 1.  Introduction 

1.1 Problem Statement 

Container marine terminals are the places where most of the world’s goods are 

transferred. With over 80% of global trade by volume and more than 70% of its value 

being carried onboard ships and handled by seaports worldwide, the importance of 

maritime transport for trade and development cannot be overemphasized. According to 

the report from United Nations Conference on Trade and Development (UNCTAD, 

2018), shown as Figure 1, maritime trade has grown at a compound annual rate of 4% 

over the past decade, the total maritime trade in 2017 has grown almost three times since 

1980.  

 

 
  

Figure 1. International maritime trade tendency 

(Unit: Millions of tons loaded) 

(Source: UNCTAD, 2018) 

  

The growth in international maritime trade has resulted in the roadway 

transportation systems of metropolitan areas, especially around the major generators that 

are ports, airports, rail yards, and industrial areas causing congestion and delays, the 

congestion even extends to the surrounding networks of roads (Figure 2). In addition, this 

situation seriously hampers the smooth operation of ports and other nearby businesses, 

resulting in huge economic losses. The environmental effects resulting from idling trucks 

has also been starting to emerge as a serious problem as truck emissions have been linked 

to health conditions including asthma, cancer and heart disease (Solomon and Bailey 

2004). As a large number of trucks arrive the marine terminals gate for importing and 

exporting containers, it can be expected that more pressure would be on marine terminals 

to manage its activities and schedule its resources properly. These growing activities 
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increase the complexity of marine terminals related planning and operational control 

problems.  

  

 
Figure 2. Truck congestion at terminal gate in the Bayport Ingate 

(Source: Port of Houston, 2019) 

 

Marine terminals are usually located in or near major cities, where right of way is 

limited and very expensive. Implementing operational strategies to reduce the effect of 

the terminals’ truck related traffic on the surrounding roadway network and the terminal 

operations is generally more feasible than physical capacity expansions. The increased 

container volumes required to be handled by marine terminals in optimum time highlight 

the need for the development of innovative countermeasures at a strategic, tactical and 

operational level. For example, using a gate appointment system to manage the truck 

arrivals and applying advanced communication and image processing technologies to 

reduce the gate service time.  

 

To assess the effectiveness of these countermeasures, a method is needed that can 

accurately estimate the truck queue length at terminal gates. The existing methods, such 

as queuing models and fluid flow models, have limitations and cannot provide accurate 

estimates of the truck queue length when certain conditions exist. For example, the 

traditional queuing models cannot handle oversaturated situations (when demand exceeds 

capacity), which occur often during peak hours at marine terminals. Note that, the 

capacity in this study is referred to as the service capacity of a terminal gate, which is 

equal to the average service rate per gate booth multiplied by the number of gate booths. 

In addition, most of the queuing models (Guan, 2009, Chen et al., 2011 and Green and 

Kolesar, 1991) do not consider the processes involved in the formation and dispersion of 

queues.  Note that, truck queue length cannot reach its steady-state instantaneously 

because there are queue formation and dispersion processes that can take many hours 

(Chen and Yang, 2014). Thus, due to the variations in the truck arrival rate and in the 

gate service time, the truck queue length may not be able to reach its steady-state before 
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the conditions are changed. Therefore, if the queue formation and dispersion processes 

are neglected, inaccurate queue length estimation will be produced.    

1.2 Objectives 

To fill these gaps, this study is to develop a new method, named the state-

dependent approximation method, for estimating the truck queue length at marine 

terminals by using the simulation-based, regression-modeling approach. The proposed 

new method considers both the queue formation and dispersion processes and can also 

estimate the truck queue length caused by short-term system oversaturation at marine 

terminals. Therefore, it can provide a more robust and better estimation of truck queue 

length at marine terminal gates than the existing methods. 

1.3 Report Overview 

The remainder of this report is organized as follows: Chapter 2 introduces the 

existing studies that used both analytical and simulation approaches for analyzing the 

marine terminal gates congestion. Chapter 3 presents a three-step methodology for truck 

queue length estimations under different conditions. Chapter 4 presents a case study to 

evaluate the accuracy of the developed model and discusses the results of this study. In 

the end, the conclusions and recommendations are summarized in Chapter 5 
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Chapter 2.  Literature Review 

2.1 Introduction 

The existing studies used both analytical and simulation approaches to analyze the 

congestion at the container terminal gates. Some of them focus on the estimation of the 

truck queue length and waiting time at the terminal gates (Yoon, 2007; Guan, 2009; Minh 

and Huynh, 2017; and Chen and Yang, 2014). Some studies analyzed the impacts of 

vehicle queue length on the approach roads to the container terminals (Grubisic et al., 

2020; and Preston et al., 2020). Some studies investigated different operational strategies, 

such as truck appointment systems, extending gate hours, and pooled queue strategy, on 

the reduction of gate congestions (Huynh and Walton, 2008; Namboothiri and Erera, 

2008; Karafa, 2012; Fleming et al., 2013; Li et al., 2018; and Azab et al, 2020). In this 

literature review, we focus on the methods for estimating the truck queue length at the 

terminal gate. In general, there are four typical types of existing methods, i.e. fluid flow 

models, queuing models, simulation-based models, and simulation-based regression 

models. An introduction of these existing methods and some representative studies for 

each method are presented below. 

2.2 Fluid Flow Models 

Fluid flow models have been used to model many types of queues such as 

telecommunication queues and vehicle queues at roadway intersections. It follows the flow 

balance principle, meaning the change in a queue equals to flow-in minus flow-out, which 

can be mathematically expressed as follows 

1t t t tl l  −= + −  

Where, 

tl  is the average queue length in the time interval [0, t]; 

t  is the average arrival rate in the time interval [0, t]; 

t  is the average service rate in the time interval [0, t]. 

Martonosi (2011) used fluid flow model to study dynamically switch servers 

between the two queues in order to minimize the total waiting time. In this paper, the basic 

idea of fluid flow model is illustrated as Figure 3.  
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Figure 3. Quantity of fluid and time in fluid flow queue diagram 

(Source: Martonosi, 2011) 

According to Figure 3, the queue length is the difference between the cumulative 

arrivals (upper curve) and services (lower curve). Compare with other methods, this 

method is simple and easy to use. Most importantly, it can estimate the queue length in 

both under-saturated and oversaturated conditions. However, this method is deterministic 

in nature because it assumes uniform arrival and service rates and cannot take account of 

the queue caused by the random fluctuations in the arrival rate or the variations in the 

service time. For example, in Figure 3 according to the fluid flow model, queue will 

develop only if the arrival rate exceeds the service rate (the oversaturated condition). 

However, queue will always form even if the arrival rate is less the service rate because of 

the random fluctuations in the arrival and service rates. Consequently, the fluid flow 

method tends to underestimate the queue length.  

 

2.3 Queueing Models 

Two types of queuing models, i.e., stationary and non-stationary models, have 

been used in modeling the length of the queue of trucks at the gates of marine terminals.  

The stationary queuing models are based on the classical queueing theory, which 

estimates the length of the steady state queue at given service and arrival rates.  These 

models are useful for determining the steady state performance of a queuing system.  

Yoon (2007) used M/M/1 and M/M/S queuing models to estimate the delay of the truck 

as containers are inspected at two successive stages of security inspections.  Guan (2009) 

applied a multi-server M/Ek/s queuing model to analyze congestion at the container’s 

terminal gate and to quantify the cost associated with the truck’s waiting.  Minh and 

Huynh (2017) expanded the work of Guan (2009) by providing design engineers with a 

methodology to investigate the possible benefit of using a pooled queuing strategy for 

inbound terminal gate trucks and to determine the optimal number of service gate booths 

for different truck waiting time threshold. The major problem with the stationary queuing 

models is that the queue formation and dispersion processes were neglected. Actually, the 

truck queue length cannot reach its steady state instantaneously and the queue formation 
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or dispersion process can take up to 24 hours (Chen and Yang, 2014). As a result, the 

stationary queuing models can not accurately estimate the time-varying truck queue 

lengths at marine terminals.  In addition, the queuing models cannot handle oversaturated 

situations, which often occur at congested marine terminals where demand exceeds 

capacity during peak hours.  

To address the problem of time-varying queue length Chen et al. (2011) used a 

non-stationary queuing model to estimate the truck queue lengths at ports.  In their 

model, a time-dependent capacity utilization ratio was used to estimate the time-

dependent length of the queue.  This time-dependent capacity utilization ratio was 

derived using the steady state queue-length equation of the stationary queuing model, 

which is based on the assumption of an undersaturated queuing system.  As a result, this 

model is not applicable to the temporarily oversaturated queuing systems too.  Other non-

stationary queuing models, such as the pointwise stationary approximation (PSA) model 

developed by Green and Kolesar (1991), also are based on stationary queuing models, 

thereby inheriting this same problem of the stationary queuing models. Chen et al. (2013) 

applied a multi-serve non-stationary queueing model to analyze the maritime terminal 

gate system. In order to be able to solve the oversaturated queueing problem, the authors 

selected the fluid flow based pointwise stationary approximation method and integrating 

it with the bisection method and a correction factor. However, this model was developed 

based on the assumption of a specific parameter of the gate service time distribution, 

which limits the applicability of the model.      

2.4 Simulation-based Models 

Numerous studies have used simulation models to investigate the problem of truck 

congestion at marine terminals. In these studies, the discrete-event simulation and agent-

based simulation are two major approaches.  

• Discrete-event simulation 

Discreet-event simulation is one of the most popular techniques in port operation 

modeling (Dragović et al., 2017). Azab & Eltawil (2016) used a discrete event simulation 

model FlexSim to study the problem of long Truck Turn Times (TTTs) for external 

trucks at marine container terminals.  In this study, special simulation software for 

container terminal operations was used to estimate the TTTs and the maximum truck 

queue lengths for different arrival patterns.  Derse and Gocmen (2018) used ARENA, a 

discrete event simulation software, to analyze the operating performance measures of a 

container terminal system, including ship waiting times, queue time of the processes, the 

number of the containers at the queue, the usage rate of the resources and the number of 

the loading-unloading containers.  Preston et al. (2018) used a discrete-event simulation 

model in analyzing the future operation of a ferry port considering the increased traffic 

volumes. Preston et al. (2020) also used this model for identifying the critical thresholds 

for vehicle processing times that would cause the system to become oversaturated. 

• Agent-based simulation 
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An agent-based model is another common type of approach for simulating the port 

operation.  Karafa et al. used an agent-based simulation PARAMICS to investigate the 

effectiveness of the truck appointment system, as well as extending gate hours. Sherif et 

al. (2011) used an agent-based simulation and solutions by EI Farol model to achieve the 

steady arrival of trucks and hence less queuing at congestion at port terminal gates. 

Fleming et al. (2013) used agent-based simulation to model the terminal gate system with 

two different queuing strategies (pooled and non-pooled queues) to evaluate the system's 

operational performance in various conditions.  

The use of simulation models is an effective approach for investigating the 

queuing process because it takes into account the random fluctuations in the arrival and 

service rates, and these models can provide estimates of the queue lengths for various 

scenarios. The limitations of the simulation-based approach are that 1) conducting the 

simulation is time-consuming and 2) the results of simulation studies cannot be applied 

easily to new scenarios that have yet to be simulated.  To overcome this problem, an 

approach, called simulation-based regression modeling, has been used by previous 

studies. 

2.5 Simulation-based Regression Models 

Simulation-based regression models have been developed in several previous 

studies for modeling the truck queue length at marine terminals.  In these studies, a 

simulation model was developed that could be used initially to simulate the operations at 

marine terminals and derive the truck queue lengths for different scenarios.  Then, based 

on the results of the simulation, regression models were developed and used to estimate 

the truck queue lengths in different scenarios.  Thus, the regression models are used to 

generalize the simulation results in order to predict the truck queue lengths beyond the 

simulated scenarios.  

 

Pham et al. (2011) evaluated the suitability of four predictive models capable of 

dealing with fuzzy data: multiple linear regression, fuzzy regression, clustering fuzzy 

regression, and support vector machines. The advantage is that the distributions of the 

truck inter-arrival time and truck processing time are not required in these models. The 

independent variables include gate congestion level, time of day, day of the week, month 

of the year, weather condition, queue length, gate processing time, and truck arrival rate. 

The dependent variable is the truck queuing time which is defined as the difference 

between the time the truck departs the queue and the time it joins the back of the queue. It 

was determined that the statistically significant variables are queue length, gate 

processing time, and truck arrival rate. The results showed that the fuzzy regression, 

support vector machines, and multiple linear regression models have comparable 

performance that is better than the fuzzy clustering regression model, while the fuzzy 

regression and support vector machines models perform relatively better. However, the 

models in this study can only be used in light to moderate gate congestion conditions 

since up to six truck queues can be captured due to the webcam’s angle. 

 

 Chen and Yang (2014) used a microscopic traffic simulation tool, PARAMIC, to 

simulate a container terminal system and observe the truck queuing process.  In their 
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study, they pointed out that “a queue cannot reach its steady state instantaneously,” and, 

according to its simulation results, it can take up to 24 hours for the queue to reach a 

steady length. Based on this finding, the truck queue length was estimated separately for 

two different states, i.e., 1) the queue formation state and 2) steady state. For “steady 

state,” a stationary queuing model, M/G/S, is used to estimate the steady queue length 

according to the arrival and service rates.  For the queue formation state, a set of 

regression models was developed for estimating the queue lengths during the queue 

formation process based on the simulation results.  It is important to note that this is the 

first study that pointed out and verified the need for considering the queue-formation 

process in modeling the truck queue length. However, it only considers the queue 

formation process without considering the queue dispersion process, which can also 

affect the accuracy of the queue estimation.  In addition, in their study, a model was 

developed specifically for a given marine terminal with a given number of gate booths (2) 

at a fixed service rate (40.8 trucks per hour), and these specific conditions limit the 

applicability of the model.  

 

2.6 Summary 

Based on the literature review, it can be concluded that the existing methods used 

to estimate truck queue length at the marine terminal gate have their limitations and 

cannot provide accurate truck queue length estimation under certain conditions.  

The fluid flow model is simple and easy to use. Most importantly, it can estimate 

the queue length in both under-saturated and oversaturated conditions. However, this 

method is deterministic in nature because it assumes uniform arrival and service rates and 

cannot take account of the queue caused by the random fluctuations in the arrival rate or 

the variations in the service time. Consequently, the fluid flow method tends to 

underestimate the queue length. 

Stationary queuing models are useful for determining the steady-state 

performance of a queuing system. But the major problem is that the queue formation and 

dispersion process was neglected. In addition, these models cannot handle oversaturated 

situations, which often occur at congested marine terminals where demand exceeds the 

capacity during peak hours. As a result, the stationary queuing models can not accurately 

estimate the time-varying truck queue lengths at marine terminals.  

Nonstationary queueing models are proposed and used to estimate the queue 

lengths at varying arrival and service rates. However, since most of the Nonstationary 

queueing models are developed based on the stationary queuing models, thereby 

inheriting the same problems of the stationary queueing model. For example, most of 

them cannot be used to estimate queue length under the oversaturated condition.  

Simulation models are effective for investigating the queue formation process 

because they can take account of the random fluctuations in the arrival and service rates 

and can provide queue length estimation for various scenarios. However, it can only 

provide the estimation for the specific case and time-consuming. Most importantly, the 

results of the simulation studies are limited by the designed scenarios and they cannot be 

easily applied to new scenarios that have not to be simulated yet. 

 The new method that we proposed in this study is a type of simulation-based 

regression model.  
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Chapter 3.  Methodology 

This research was conducted to develop a new method, named state-dependent 

approximation method, for estimating truck queue length at marine terminals.  The model 

was developed based on the method proposed by Chen and Yang (2014), but it expanded 

two critical aspects of their work.  First, both queue formation and dispersion processes 

have been considered in the estimation of truck queue length. Thus, the truck queue 

length was estimated separately for four different states: I) steady-state, II) queue 

formation state, III) queue dispersion state, and IV) oversaturated state.  Second, the 

proposed model can be used for estimating truck queue length at the marine terminals 

with different numbers of gate booths and various service rates. 

This model was developed in three steps, i.e., 1) estimating the steady queue 

length, 2) modeling the queue formation and dispersion processes, and 3) developing the 

final model. This three-step method is illustrated in Figure 4.  

 

Figure 4. Flowchart of the modeling method 

 

3.1 Step 1- Estimating the Steady Queue Length  

 

In this step, a multi-server (M/M/S) queuing model was used to estimate the steady-

state length of the queue of trucks. A marine terminal gate system that has multiple 

Queueing 

Model

•Steady state of queue length estimation

•Stationary queueing model

Simulation

Model

•Queue formation process simulation by given scenarios

•Queue dispersion process simulation by given scenarios

Regression

Model

•Based on the simulation results of defferent scenario, 
develop 

◦ Regression models for queue formation process

◦ Regression models for queue dispersion process
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inbound and outbound gates can be treated as a multi-server queuing system. In this 

queuing system, it is assumed that 1) the number of parallel servers (S) is the number of 

gate booths, 2) the truck arrival rate (number of trucks arriving per hour) follows a 

Poisson distribution (M), and 3) the service time for each gate follows an exponential 

distribution (M).  Under these assumptions, the system utilization factor (  ) is given by 

the following equation:   

      
C S

 



= =                                     (2)        

Where λ is the average truck-arrival rate (average number of trucks arriving per 

hour), C is the service capacity of a terminal gate, µ is the average service rate per gate 

booth (average number of trucks that can be served per hour per gate booth), and S is the 

number of gate booths. 

  

Then, according to the M/M/S queuing model, the steady state of the truck queue 

length (the average number of trucks in the queue) can be estimated by the following 

equation: 

0

0
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where /  =  is referred to as traffic density (Guan, 2009), and 0P  is the 

probability that no trucks are in the queue ( 0L = );  0P  can be estimated by the following 

equation:  
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According to Equations 2 and 3, the steady queue length, L, is a function of ,  , 

and S. Besides, since 

S S

 



= =

 , 

  is a function of α and S. Therefore, the steady queue length L can be viewed as a 

function with only two variables  and S as follows: 
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where 
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  

     
      

  

Equation 5 shows that L can be determined once the values of α and S are given.   

3.2 Step 2 - Modeling the Queue Formation and Dispersion Processes 

 

A simulation-based regression modeling approach was used to model the formation 

and dispersion processes of the queue.  Initially, a queuing simulation model was 

developed to simulate the queue formation and dispersion processes in different 

scenarios.  Based on the simulation results, a set of regression models was developed for 

estimating the average truck queue length at a particular moment of the queue formation 

and dispersion processes. 

 

• Queuing Simulation 

 

A queuing simulation model was developed using MATLAB. In the simulation, the 

arrival time of a truck and the truck service time is determined according to the random 

numbers generated from two exponential distributions.  The parameters of these two 

exponential distributions were set according to the truck arrival rate and the gate service 

rate.   The simulation time is set enough long (up to 60 hours) to allow the queue to reach 

its steady state.  Since the steady queue is only determined by two variables, i.e., traffic 

density ( /  = ) and the number of gate booths (S), different simulation scenarios 

were designed by varying these two variables. In this study, based on an interview with 

managers at a marine terminal in the Houston area, S was set from 2 to 21, which is the 

range of the number of gate booths that usually are open at marine terminals.  The value 

of  was set according to S because   is equal to / S  and there are some constraints on 

the value of  .  First, to reach a steady-state, the system utilization factor (  ) should be 

less than 1.  Second,   should not be very small, otherwise, the steady queue length will 

be very short and can be reached instantaneously.  Using the trial-and-error method, the 

minimum value of   was set as 0.75.  Thus,   varies from 0.75 to 1.  For the design of 

the simulation scenarios, the value of   varies from 0.75 to 0.95 in 0.05 increments.  

Since   is equal to / S ,  the value of   varies from 0.75S to 0.95S in 0.05S 

increments.  As listed in Tables 1 and 2, 95 different simulation scenarios were designed 

by varying the two variables, S and  .  Note that, in the real-world application, if 

/  =  is not equal to the values listed in Tables 1 and 2, the interpolated method 

could be used for deriving the estimated queue length tl .  

Since the simulation is driven by stochastic factors, for each designed simulation 

scenario, 500 simulation runs were conducted for both the queue formation and queue 
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dispersion processes. The simulated lengths of the queue were averaged, and the average 

queue lengths showed a clearly-developed trend (Figure 2).  Figure 2(a) is the simulation 

result for the queue formation process for an example scenario (S = 20 and  = 19), and 

Figure 2(b) is the simulation result for the queue dispersion process for the same 

scenario.   Note that, the initial queue length is set at 0 for the queue formation process, 

and for the queue dispersion process, the initial queue is generated by doubling the arrival 

rate to make the system oversaturated for the first hour. In Figure 2a (Figure 2b), the 

queue length continues increasing (decreasing) until it reaches a steady-state, then it 

fluctuates slightly within a range.  In Figure 2, the critical point is the first time point at 

which the queue length reached its steady state. The steady queue length (14.3526) was 

estimated by using Equation 5. Using this critical point as a boundary, the entire queuing 

formation (dispersion) process can be divided into two states, i.e., 1) queue formation 

(dispersion) state and 2) steady-state. Figure 2 shows that it takes a long time for the 

length of the queue to reach a steady state. Therefore, if the queue formation (dispersion) 

process is neglected, the length of the queue in the queue formation (dispersion) state will 

be overestimated (underestimated). 
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Figure 2a. Queue formation process 

 

 
Figure 2b. Queue dispersion process 

Figure 5. Simulation results for an example scenario (S = 20 and  = 19) 

 

• Development of Regression Models 

Based on the simulation results, regression models were developed for 

estimating the queue length at a particular moment of queue formation or queue 

dispersion state.  

 For the queue-formation state, it was found that the natural logarithm curve fit 

the simulated queuing curve well (Figure 2.a).  Therefore, the following regression 

model used by Chen and Yang (2014) was used for modeling the queue length during 

the queue formation state:  

lt= 3.2908ln(t) + 7.4617

R² = 0.973
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  1 1( ) , [0, ]tl a ln t b t critical point= + +                                  (6)                                                                    

where t is the time interval, lt is the queue length at t, and 1a and 1b  are the 

coefficients for the regression model for the queue formation state.   

 

For the queue dispersion state, it was found that the natural exponential curve fit the 

simulated queue formation curve better (Figure 2.b). Therefore, the regression model for 

the queue dispersion stage is:  

        2 2exp( ) , [0, ]tl a b t t critical point= +                         

(7) 

 where t is the time interval, lt is the queue length at t, and 2a  and 2b are the 

coefficients for the regression model for the queue dispersion state.   

 

For each simulation scenario, the simulated queue lengths before reaching the 

critical point were used to develop the regression model. The modeling results for 

different simulation scenarios for both the queue formation state and the queue dispersion 

state are presented in Tables 1 and 2, respectively. 
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Table 1. Regression models for the Queue Formation State  

 

 
SIMULATION SCENARIOS  
  

SIMULATION RESULTS STEADY QUEUE 
LENGTH (L) 
ESTIMATED BY 
THE QUEUING 
MODEL 

Time to Reach 
Steady State 
(hours) 

Regression Models 
( )1 1lntl a t b= + , 

t[0, critical point] 

S α=λ/µ    
1a  1b  R2  

 

 

2 

1.5 0.75 1.6 0.5496 1.662 0.9043 2.0887 

1.6 0.8 3.17 0.5984 1.9951 0.9037 3.1263 

1.7 0.85 5.07 1.0612 2.9571 0.9019 4.9888 

1.8 0.9 10.92 1.8115 4.1236 0.9333 9.1168 

1.9 0.95 18.43 5.5311 5.3286 0.9227 24.9526 

 

 

3 

2.25 0.75 1.02 0.4791 1.41 0.9001 1.7033 

2.4 0.8 1.92 0.687 1.7732 0.9113 2.5888 

2.55 0.85 6.17 0.8219 2.0216 0.9002 4.1388 

2.7 0.9 6.85 1.6 3.1657 0.936 7.3535 

2.85 0.95 24.07 3.1828 4.9391 0.9184 17.2332 

 

 

4 

3 0.75 0.95 0.4769 1.4356 0.9088 1.5283 

3.2 0.8 1.67 0.551 1.6508 0.9012 2.3857 

3.4 0.85 2.10 1.0272 2.5478 0.9125 3.9061 

3.6 0.9 6.40 1.3923 3.5117 0.9272 7.0898 

3.8 0.95 20.80 3.3506 4.7571 0.9257 16.937 

 

 

5 

3.75 0.75 1.38 0.3939 1.1845 0.9083 1.3854 

4 0.8 1.82 0.6117 1.7434 0.9088 2.2165 

4.25 0.85 3.40 0.9129 2.1158 0.9109 3.7087 

4.5 0.9 5.63 1.5224 3.384 0.9013 6.8624 

4.75 0.95 17.77 3.4924 5.1727 0.9385 16.6782 

 

 

6 

4.5 0.75 0.67 0.3902 1.1976 0.8684 1.265 

4.8 0.8 1.52 0.6158 1.6264 0.9051 2.0711 

5.1 0.85 3.80 0.8279 2.2095 0.9108 3.5363 

5.4 0.9 6.70 1.5462 3.4707 0.9113 6.6611 

5.7 0.95 15.10 3.206 6.3214 0.9206 16.4462 

 

 

7 

5.25 0.75 0.63 0.4664 1.3448 0.8414 1.1614 

5.6 0.8 1.13 0.5639 1.5933 0.9075 1.9438 

5.95 0.85 1.90 0.9113 2.4528 0.9152 3.3829 

6.3 0.9 3.58 1.6988 3.6956 0.9205 6.4796 

6.65 0.95 14.30 3.5003 6.3407 0.9323 16.2346 

 

 

8 

6 0.75 0.82 0.3419 0.9508 0.8421 1.0709 

6.4 0.8 0.92 0.5609 1.6412 0.9046 1.8306 

6.8 0.85 2.03 0.9082 2.1834 0.903 3.2446 

7.2 0.9 3.93 1.476 3.6504 0.9441 6.3138 

7.6 0.95 15.07 2.8699 6.2115 0.9212 16.0392 
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Table 1. Regression models for the Queue Formation State (continued) 
 

 

SIMULATION 

SCENARIOS  

  

SIMULATION RESULTS STEADY QUEUE 

LENGTH (L) 

ESTIMATED BY 

THE QUEUING 

MODEL 

Time to Reach 

Steady State 

(hours) 

Regression Models 

( )1 1lntl a t b= + , 

t[0, critical point] 

S α=λ/µ    
1a  1b  R2  

 

 

9 

6.75 0.75 0.65 0.3244 0.9625 0.8376 0.9911 

7.2 0.8 0.88 0.5121 1.4498 0.8745 1.7289 

7.65 0.85 2.65 0.7144 2.1002 0.9293 3.1184 

8.1 0.9 4.13 1.2183 3.5405 0.9402 6.1608 

8.55 0.95 12.15 3.0204 5.8623 0.9125 15.8571 

 

 

10 

7.5 0.75 0.63 0.3075 0.8862 0.8362 0.9198 

8 0.8 1.25 0.4328 1.2042 0.8919 1.6367 

8.5 0.85 1.80 0.7387 2.1294 0.9001 3.0025 

9 0.9 3.22 1.528 3.5336 0.9072 6.0186 

9.5 0.95 11.67 3.3032 6.4172 0.9412 15.6861 

 

 

11 

8.25 0.75 0.72 0.2412 0.7163 0.8493 0.8559 

8.8 0.8 1.13 0.4305 1.2839 0.8902 1.5526 

9.35 0.85 1.73 0.7532 2.0954 0.9029 2.8953 

9.9 0.9 3.02 1.5566 3.8807 0.9241 5.8855 

10.45 0.95 6.50 3.2303 6.9972 0.9216 15.5247 

 

 

12 

9 0.75 0.47 0.2883 0.8982 0.8496 0.7981 

9.6 0.8 0.65 0.5423 1.5628 0.8475 1.4754 

10.2 0.85 1.47 0.7352 1.9378 0.8678 2.7956 

10.8 0.9 2.18 1.6461 3.8623 0.895 5.7604 

11.4 0.95 10.90 3.57 6.1661 0.9239 15.3715 

 

 

13 

9.75 0.75 0.77 0.2114 0.6772 0.8731 0.7456 

10.4 0.8 0.85 0.3607 1.0585 0.8127 1.4041 

11.05 0.85 1.55 0.7702 2.1661 0.9037 2.7024 

11.7 0.9 2.10 1.6288 4.003 0.9098 5.6422 

12.35 0.95 5.70 3.4051 7.1178 0.9324 15.2255 

 

 

14 

10.5 0.75 0.65 0.2545 0.7192 0.8155 0.6978 

11.2 0.8 1.12 0.3904 1.0828 0.828 1.3381 

11.9 0.85 1.62 0.7569 1.955 0.9042 2.6149 

12.6 0.9 2.57 1.3232 3.5006 0.907 5.5302 

13.3 0.95 5.60 3.7782 7.9171 0.9356 15.086 

 

 

15 

11.25 0.75 0.73 0.2205 0.6503 0.8114 0.654 

12 0.8 1.12 0.3466 1.0322 0.8212 1.2768 

12.75 0.85 1.60 0.6317 1.8434 0.8081 2.5326 

13.5 0.9 2.42 1.4169 3.6617 0.9183 5.4237 

14.25 0.95 7.35 3.1303 6.9993 0.9426 14.9522 
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Table 1. Regression models for the Queue Formation State (continued)  
 

 

SIMULATION 

SCENARIOS  

  

SIMULATION RESULTS STEADY QUEUE 

LENGTH (L) 

ESTIMATED BY 

THE QUEUING 

MODEL 

Time to Reach 

Steady State 

(hours) 

Regression Models 

( )1 1lntl a t b= + , 

t[0, critical point] 

S α=λ/µ    
1a  1b  R2  

 

 

16 

12 0.75 0.42 0.2439 0.7567 0.803 0.6137 

12.8 0.8 1.25 0.3464 0.9659 0.8382 1.2195 

13.6 0.85 1.58 0.7098 1.9418 0.8792 2.4549 

14.4 0.9 2.65 1.1969 3.2778 0.8887 5.3221 

15.2 0.95 6.63 3.0118 6.8217 0.8988 14.8237 

 

 

17 

12.75 0.75 0.48 0.1942 0.6021 0.8205 0.5766 

13.6 0.8 0.6 0.4233 1.2191 0.8212 1.166 

14.45 0.85 0.98 0.8053 2.295 0.8393 2.3814 

15.3 0.9 1.37 1.4246 3.6318 0.8559 5.225 

16.15 0.95 5.25 3.0934 7.5561 0.9274 14.6998 

 

 

18 

13.5 0.75 0.88 0.1533 0.416 0.8008 0.5424 

14.4 0.8 1.13 0.3182 0.9613 0.8383 1.1158 

15.3 0.85 1.98 0.5366 1.5367 0.8158 2.3116 

16.2 0.9 2.23 1.424 3.6836 0.9046 5.132 

17.1 0.95 7.73 2.982 6.5964 0.9253 14.5802 

 

 

 

19 

14.25 0.75 0.45 0.1746 0.5408 0.8011 0.5107 

15.2 0.8 0.95 0.2895 0.8024 0.8018 1.0687 

16.15 0.85 1.62 0.5357 1.6298 0.8033 2.2452 

17.1 0.9 1.87 1.4706 3.6424 0.8992 5.0427 

18.05 0.95 5.10 3.4827 7.2951 0.8815 14.4646 

 

 

 

20 

15 0.75 0.82 0.1604 0.4685 0.8288 0.4813 

16 0.8 0.90 0.3403 0.9435 0.8851 1.0243 

17 0.85 1.03 0.7324 1.9957 0.8866 2.182 

18 0.9 2.55 1.3591 3.6086 0.9178 4.9569 

19 0.95 7.27 3.2908 7.4617 0.973 14.3526 
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Table 2. Regression models for the Queue Dispersion State 
 

 

SIMULATION 

SCENARIOS  

  

SIMULATION RESULTS STEADY QUEUE 

LENGTH (L) 

ESTIMATED BY 

THE QUEUING 

MODEL 

Time to Reach 

Steady State 

(hours) 

Regression Models 

2 2exp( )tl a b t=  

 t[0, critical point] 

S α=λ/µ    
2a  2b  R2  

 

 

2 

1.5 0.75 4.63 50.53

1 

-0.556 0.958 2.0887 

1.6 0.8 5.75 55.79

1 

-0.374 0.9476 3.1263 

1.7 0.85 6.27 60.37

9 

-0.312 0.9549 4.9888 

1.8 0.9 9.6 41.31

8 

-0.154 0.9482 9.1168 

1.9 0.95 8.77 35.44

1 

-0.033 0.9644 24.9526 

 

 

3 

2.25 0.75 6.42 25.52

1 

-0.354 0.983 1.7033 

2.4 0.8 7.18 30.23

6 

-0.311 0.9925 2.5888 

2.55 0.85 12.08 29.76

7 

-0.156 0.9806 4.1388 

2.7 0.9 11.92 29.16

3 

-0.11 0.9675 7.3535 

2.85 0.95 18.80 36.08

1 

-0.038 0.9678 17.2332 

 

 

4 

3 0.75 6.92 27.61

8 

-0.42 0.9177 1.5283 

3.2 0.8 7.58 37.03

9 

-0.331 0.9554 2.3857 

3.4 0.85 11.82 32.65

1 

-0.163 0.9561 3.9061 

3.6 0.9 13.97 41.88

7 

-0.14 0.9879 7.0898 

3.8 0.95 22.08 40.22

4 

-0.04 0.9618 16.937 

 

 

5 

3.75 0.75 4.25 72.61

9 

-0.749 0.9958 1.3854 

4 0.8 7.70 51.92 -0.382 0.9817 2.2165 

4.25 0.85 10.98 42.78

1 

-0.216 0.9697 3.7087 

4.5 0.9 19.08 56.25

9 

-0.146 0.997 6.8624 

4.75 0.95 32.05 52.40

7 

-0.038 0.9475 16.6782 

 

 

6 

4.5 0.75 5.27 67.53

8 

-0.661 0.9705 1.265 

4.8 0.8 5.53 92.81

5 

-0.567 0.9943 2.0711 

5.1 0.85 8.78 68.92

7 

-0.316 0.9835 3.5363 

5.4 0.9 14.83 64.50

9 

-0.155 0.9706 6.6611 

5.7 0.95 29.23 66.98

5 

-0.047 0.9644 16.4462 

 

 

7 

5.25 0.75 4.18 124.8

1 

-0.881 0.9956 1.1614 

5.6 0.8 6.02 97.33

1 

-0.538 0.9976 1.9438 

5.95 0.85 8.73 80.81 -0.324 0.9898 3.3829 

6.3 0.9 14.07 74.34

5 

-0.17 0.9765 6.4796 

6.65 0.95 28.75 76.73

2 

-0.054 0.9862 16.2346 

 

 

8 

6 0.75 4.62 126.3

1 

-0.866 0.9863 1.0709 

6.4 0.8 5.97 115.5

3 

-0.616 0.9829 1.8306 

6.8 0.85 11.25 83.51

7 

-0.292 0.9581 3.2446 

7.2 0.9 17.43 72.57

5 

-0.149 0.9393 6.3138 

7.6 0.95 34.92 75.57

5 

-0.047 0.9315 16.0392 
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Table 2. Regression models for the Queue Dispersion State (continued) 

 

 

SIMULATION 

SCENARIOS  

  

SIMULATION RESULTS STEADY QUEUE 

LENGTH (L) 

ESTIMATED BY 

THE QUEUING 

MODEL 

Time to Reach 

Steady State 

(hours) 

Regression Models 

2 2exp( )tl a b t=  

 t[0, critical point] 

S α=λ/µ    2a  2b  R2  

 

 

9 

6.75 0.75 4.20 177.7

3 

-0.998 0.9922 0.9911 

7.2 0.8 6.45 137.8

5 

-0.607 0.9901 1.7289 

7.65 0.85 8.67 137.8

9 

-0.392 0.9885 3.1184 

8.1 0.9 15.32 101.4

4 

-0.169 0.9911 6.1608 

8.55 0.95 35.42 86.84

4 

-0.054 0.9277 15.8571 

 

 

10 

7.5 0.75 3.90 265.8

1 

-1.146 0.9836 0.9198 

8 0.8 7.12 107.0

5 

-0.553 0.9458 1.6367 

8.5 0.85 9.90 129.2

6 

-0.367 0.9877 3.0025 

9 0.9 15.22 117.9

1 

-0.198 0.9758 6.0186 

9.5 0.95 32.78 100.6 -0.061 0.953 15.6861 

 

 

11 

8.25 0.75 3.70 284.3

7 

-1.148 0.9889 0.8559 

8.8 0.8 5.32 231.8

5 

-0.755 0.9896 1.5526 

9.35 0.85 6.70 219.8

1 

-0.499 0.9753 2.8953 

9.9 0.9 15.17 137.1

1 

-0.209 0.9741 5.8855 

10.45 0.95 29.57 133.3

8 

-0.071 0.9899 15.5247 

 

 

12 

9 0.75 4.13 271.0

4 

-1.113 0.9902 0.7981 

9.6 0.8 4.63 312.3

5 

-0.851 0.978 1.4754 

10.2 0.85 7.58 220.0

6 

-0.514 0.9914 2.7956 

10.8 0.9 17.50 148.2

7 

-0.183 0.9863 5.7604 

11.4 0.95 41.03 121.1

7 

-0.05 0.9747 15.3715 

 

 

13 

9.75 0.75 3.45 432.0

1 

-1.319 0.9833 0.7456 

10.4 0.8 4.75 385.6 -0.932 0.9632 1.4041 

11.05 0.85 9.90 161.9 -0.391 0.9725 2.7024 

11.7 0.9 17.72 142.8

1 

-0.193 0.9597 5.6422 

12.35 0.95 29.63 161.8

7 

-0.079 0.996 15.2255 

 

 

14 

10.5 0.75 5.02 304.2

9 

-1.03 0.9794 0.6978 

11.2 0.8 6.68 271.5

4 

-0.723 0.984 1.3381 

11.9 0.85 7.57 298.3

6 

-0.545 0.9852 2.6149 

12.6 0.9 13.53 222.0

1 

-0.257 0.9934 5.5302 

13.3 0.95 41.00 138.2

7 

-0.059 0.9536 15.086 

 

 

15 

11.25 0.75 3.72 617.2

3 

-1.422 0.979 0.654 

12 0.8 4.98 456.5

7 

-0.913 0.9754 1.2768 

12.75 0.85 8.88 294.7

9 

-0.509 0.9774 2.5326 

13.5 0.9 14.73 226.9

4 

-0.241 0.993 5.4237 

14.25 0.95 31.60 183.4

7 

-0.079 0.9893 14.9522 
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Table 2. Regression models for the Queue Dispersion State (continued) 
 

 

SIMULATION 

SCENARIOS  

  

SIMULATION RESULTS STEADY QUEUE 

LENGTH (L) 

ESTIMATED BY 

THE QUEUING 

MODEL 

Time to Reach 

Steady State 

(hours) 

Regression Models 

2 2exp( )tl a b t=  

 t[0, critical point] 

S α=λ/µ    2a  2b  R2  

 

 

16 

12 0.75 3.85 732.5

1 

-1.466 0.9841 0.6137 

12.8 0.8 5.90 489.4

3 

-0.932 0.966 1.2195 

13.6 0.85 8.87 287.2 -0.492 0.9914 2.4549 

14.4 0.9 18.60 184.7

6 

-0.198 0.9679 5.3221 

15.2 0.95 30.10 184.7 -0.084 0.9778 14.8237 

 

 

17 

12.75 0.75 2.98 1170.

4 

-1.729 0.9471 0.5766 

13.6 0.8 5.12 535.0

9 

-0.978 0.9812 1.166 

14.45 0.85 9.28 341.8

1 

-0.512 0.9855 2.3814 

15.3 0.9 16.57 223.3

8 

-0.237 0.9685 5.225 

16.15 0.95 32.15 200.1

5 

-0.087 0.9683 14.6998 

 

 

18 

13.5 0.75 6.42 394.8

3 

-0.893 0.9717 0.5424 

14.4 0.8 8.38 403.9

3 

-0.607 0.9779 1.1158 

15.3 0.85 8.85 382.4

3 

-0.528 0.9823 2.3116 

16.2 0.9 14.15 280.5

8 

-0.278 0.989 5.132 

17.1 0.95 40.57 187.9

5 

-0.07 0.9521 14.5802 
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14.25 0.75 4.05 849.6

3 

-1.469 0.9886 0.5107 

15.2 0.8 5.62 557.7

7 

-0.954 0.9703 1.0687 

16.15 0.85 8.02 438.1

6 

-0.579 0.989 2.2452 

17.1 0.9 16.93 236.5 -0.239 0.9463 5.0427 

18.05 0.95 32.45 215.6

6 

-0.086 0.9759 14.4646 
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15 0.75 3.37 1495.

9 

-1.737 0.9595 0.4813 

16 0.8 4.35 791.5

1 

-1.078 0.9496 1.0243 

17 0.85 7.23 547.2

5 

-0.647 0.9766 2.182 

18 0.9 13.47 367.4 -0.293 0.9878 4.9569 

19 0.95 35.17 241.2

7 

-0.083 0.9799 14.3526 
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3.3 Step 3 - Development of the Final Model  

Based on the regression models that were developed, the truck queue length can be 

estimated separately for four different states, i.e., 1) steady state, 2) queue formation 

state, 3) queue dispersion state, and 4) oversaturated state. The basic modeling ideal can 

be described by the following step-by-step procedure.  

 

1. Check to determine whether or not the system is oversaturated. If the system 

utilization factor at time t, i.e., t  , is equal to or greater than 1, then the system is 

oversaturated, which means the demand is greater than the capacity. In this case, a 

steady queue length cannot be reached, and the fluid flow model will be used to 

estimate the queue length as follows: 

 1t t t tl l S −= + −   (8) 

2. If the system is not oversaturated, then, according to the traffic density ( /  =

) and the number of gate booths (S) at time t, the steady queue length at time t, 

i.e., tL , can be estimated according to Equation 5. After that, according to the 

estimated queue length at the time interval t-1, i.e., 1tl −  , the state of the queuing 

process can be determined.  

a. If 1t tl L−  , it is at the queue formation state. Then, the regression models 

(see Equation 6) developed for the queue formation state (given in Table 1) will 

be used to estimate the length of the queue at time interval t. Figure 3 shows the 

basic idea for this step. According to the value of 1tl − , the time needed for the 

queue length to reach 1tl −  can be derived by the regression model at first. Then, 

by adding 1 time interval, the current queue length tl , can be estimated by the 

regression model. This can be expressed mathematically as follows: 

( )1 1( , ) ' 1 ( , )queueformation

t t t t tl a S ln t b S = + +

 (

9) 

where:  

1 1

1

( , )
'

( , )

t t t

t t

l b S
t exp

a S




− −

=

 
  

In addition, since the estimated queue length will not exceed the 

steady length of the queue, then: 

 

{ , }queueformation

t t tl min l L=
 

  



 

35 

 

 

Figure 6. Estimation of the Queue Length for the Queue Formation State 

 

b. If 1t tl L−  , it is at the queue dispersion state, and the regression models 

(see Equation 7) developed for the queue dispersion state will be used to estimate 

the queue length at time interval t.  Similarly, the current queue length, tl , can be 

estimated according to the value of 1tl − ,  by the following equations: 

 ( )2 2( , ) ( , ) 1queuedispersion

t t t t tl a S exp b S t  = +  

 (

10) 

where: 

1
2

2

' / ( , )
( , )

t
t t

t t

l
t ln b S

a S



−

 
=  

   
and 

{ , }queuedisperson

t t tl max l L=   

 (

11)  

c. If 1t tl L− = , it is at steady state, and then, the steady queue length tL can be 

used for estimating tl . Based on the modeling ideals described above, the 

overall model can be expressed mathematically as: 

 

1

1

1

1

{ , },

,
, 1

{ , },

, 1

queueformation

t t t t

t t t
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t t t t

t t t t

min l L l L

L l L
l if

max l L l L

l S if



  

−

−

−

−

 


=
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
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                (12) 

where 
t

t

tS


 =  

lt= 3.2908ln(t) + 7.4617
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queueformation

tl  is estimated by Equation 9 
queuedispersion

tl  is estimated by Equation 10 

tL is estimated by Equation 5 

3.4 Summary 

In this Chapter, a state-dependent approximation method for estimating truck queue 

length at marine terminals was developed. First, the critical point (the time interval that 

reaches the queue steady-state) was identified for each scenario by conducting thousands 

of simulations. Total 95 different scenarios were designed to simulate the truck queuing 

system with varied truck arrival rates and gate service rates, the results showed that it 

takes several hours for the truck queue length to reach its steady-state, it will cause 

overestimation or underestimation of truck queue length if neglecting the queue 

formation and queue dispersion processes. Second, by analyzing the simulation results, it 

was found queue formation process and queue dispersion follow different equations. The 

queue formation process follows logarithmic while the queue dispersion process follows 

exponential. The comprehensive model was proposed based on the regression analysis 

and named as “Simulation-based Regression State-wise Non-Stationary Model”, which 

fully considered three queue states: queue formation state, queue steady-state, and queue 

dispersion state. The flow chart for the use of the developed model are presented in 

Figure 7. 
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Figure 7. Model Flowchart  
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Figure 10. Flowchart showing the steps to use the model 
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Chapter 4.  A Case Study 

In this chapter, to evaluate the model that was developed, a case study was 

conducted to compare the accuracy of the model with other existing methods, including 

the fluid flow model, the M/M/S queuing model, and the simulation-based regression 

model developed by Chen and Yang (2014), which is referred to as Chen (2014)’s model.  

 

4.1 Simulation Scenario Design 

 

A simulation-based numerical experiment was conducted to derive the simulated 

truck queue length at a maritime terminal where the truck arrival rate and the gate service 

rate vary throughout the day. It was assumed that the hourly truck arrival rate increased 

from 35 to 45 during the first 10 hours and decreased to 31 for the rest of the day.  To 

compare with Chen (2014)’s model, the number of gate booths S and the service rate µ 

(number of trucks that can be served per hour) were set the same as in Chen (2014)’s 

model, i.e., S = 2 and µ = 40.8. Therefore, the system was oversaturated during a 9-hour 

peak period (from 6th to 14th hour).  

 

4.2 Case Study Results 

 

The proposed modeling methods and the selected comparison models were applied 

to this case study to estimate the truck queue at the gate of this maritime terminal.  The 

modeling results and the results of other existing models are presented in Figure 5.  
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Figure 8. Estimated Truck Queue Lengths by Different Models for the Case Study 

 

By comparing the simulated truck queue lengths with the queue lengths estimated by 

different models, the following key findings were obtained: 

1. Overall, the proposed state-dependent approximation method 

outperformed the other modeling methods regarding the accuracy of the 

estimation. Other models either underestimated or overestimated the queue 

lengths. 

2. The fluid flow model significantly underestimated the queue length 

because it neglected the random fluctuations in the arrival rate and the gate 

service rate. 

3. The M/M/s queuing model cannot be used in the oversaturation condition 

(  > 1), and it significantly overestimated the queue length for the queue 

formation state and significantly underestimated the queue length for the queue 

dispersion state.  

4. Chen (2014)’s model had a comparable performance during the queue 

formation process.  However, it significantly underestimated the queue length 

during the queue dispersion process because this process was not considered in 

the model. 
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Discussions 

The proposed modeling method can estimate the truck queue length more accurately 

than the other four existing methods. It is because the truck queue length needs several 

hours to reach its steady-state and the developed model is the only model that can take 

account of both the queue formation and dispersion processes. In addition to the model 

estimation accuracy, the proposed model is more flexible and applicable than other 

models. First, it can be used for both undersaturated and oversaturated situations. This 

new method can accurately estimate the truck queue length caused by the short-term 

oversaturation during peak hours. Therefore, it will be useful for assessing the 

effectiveness of the countermeasures that are targeted at reducing the peak-hour 

congestion at marine terminals.  Second, since the model estimates the truck queue length 

based on two input variables, i.e., traffic density ( /  = ) and the number of gate 

booths (S), it can be used for marine terminals that have different numbers of gate booths 

and different gate services rates.   

In term of the model applications, the developed model can be used for assessing the 

effectiveness of some countermeasures that reduce the terminal gate congestion by 

controlling the truck arrival rate (such as terminal appointment system), reducing the gate 

service time (such as using optical character recognition (OCR) technology and IT 

system) or increase the number of gate booths.  Besides, it can be used as a sketching tool 

to quickly estimate the truck queue lengths to help design the scenarios for simulation-

based port operation modeling. For example, the size of the buffer zone in the simulation 

model can be set according to the estimated truck queue lengths. 
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Chapter 5.  Conclusions and Recommendations 

In this study, a state-dependent approximation method for estimating truck queue length 

at marine terminals was developed to fill the gaps in the existing methods. Based on the 

simulation of the truck queuing system, it was found that it takes several hours for the 

truck queue length to reach its steady-state, and neglecting the queue formation (queue 

dispersion) processes will cause overestimation (underestimation) of truck queue length. 

To address this problem, the proposed method takes account of both the queue formation 

and dispersion processes into the truck queue length estimation. The model evaluation 

results showed that it can produce more accurate and robust estimates of the truck queue 

length than the existing methods. In addition, this new method can accurately estimate 

the truck queue length caused by the short-term oversaturation during peak hours.  

Therefore, it will be useful for assessing the effectiveness of the countermeasures that are 

targeted at reducing the peak-hour congestion at marine terminals. Furthermore, the 

developed model can be applied to estimate the customers’ queue at any service facility 

in the transportation and logistic industry where the customer arrival rate and service rate 

vary by time and system oversaturation conditions exist during peak hours. 

 

In this study, the proposed model was evaluated based on the simulation 

experiment results.  In the future, field data need to be collected at the maritime terminal 

gates to further verify the accuracy of the developed model.  In addition, more research 

can be conducted on the application of the developed model to optimize some operational 

strategies, such as the terminal appointment system, to minimize the truck queue length at 

the terminal gates 
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APPENDIX 

A. QUEUE FORMATION SIMULATION PROGRAM 

myRecord = struct('list',[]) 
  
for n=1:100 (100 is the simulation run times) 
 
lam= truck arrival time interval (Seconds), changed with different 
scenarios;  
u=single gate service rate (Seconds), fixed; 
  
r1=lam;tr1=time to be simulated; 
r2=lam;tr2=0; 
r3=lam;tr3=0; 
 
s1=Number of gates, changed with different scenarios;ts1= time to be 
simulated; 
s2= Number of gates, changed with different scenarios;ts2=0; 
s3= Number of gates, changed with different scenarios;ts3=0; 
 
R=[ r1 tr1; 
   r2 tr2; 
   r3 tr3]; 

S=[s1 ts1; 
    s2 ts2; 
    s3 ts3]; 
  
dddt=[]; 
rn=length(R(:,1)); 
for i=1:rn 
    dt{i}=[]; 
end 
  
for i=1:rn 
    while sum(dt{i})<R(i,2)*60 
    dt{i}=[dt{i} exprnd(R(i,1),1,1)]; 
    end 
end 
  
for i=1:rn 
    dddt=[dddt dt{i}]; 
end 
d=cumsum(dddt); 

N=length(d); 
wt=zeros(1,N); 
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mm=zeros(1,s1); 
sn=length(S(:,1)); 
plf=[]; 
  

ft=exprnd(u,1,N); 
f1=zeros(length(d),s1); 
for i=1:s1 
    f1(i,i)=1; 
end 
k=0;kk=0; 
for i=s1+1:N 
     
    llf=[]; 
    lf=zeros(1,s1); 
  
    if d(i)>(ts1+ts2)*60 
            e=find(f1(i-1,:)==2); 
              for ii=1:N 
                f1(ii,e)=0; 
              end 
        end 
    for j=1:s1 
        if max(f1(1:i-1,j))==0 
            lf(j)=0; 

        elseif max(f1(1:i-1,j))==1 
        mm(j)=max(find(f1(1:i-1,j)==1)); 
         
        lf(j)=d(mm(j))+ft(mm(j))+wt(mm(j)); 
        elseif max(f1(1:i-1,j))==2  
             lf(j)=inf; 
        end 
       
          if lf(j)==0&&k<s1-s2&&d(i)>ts1*60&&d(i)<(ts1+ts2)*60 
          k=k+1;  
          for ii=1:N 
                f1(ii,j)=2; 
            end 
          end 
         
        if lf(j)>0&&lf(j)<d(i)&&k<s1-s2&&d(i)>ts1*60&&d(i)<(ts1+ts2)*60 
               k=k+1; 
          for ii=1:N 
                f1(ii,j)=2; 

            end 
          end 
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         if lf(j)>d(i)&&k<s1-s2&&d(i)>ts1*60&&d(i)<(ts1+ts2)*60 
            llf=[llf ;[lf(j) j]]; 
             
         end 

           
    end 
    if length(llf)~=0 
    slf=sortrows(llf,1); 
    if k<s1-s2 
        for jj=1:s1-s2-k 
             for ii=1:N 
              f1(ii,slf(jj,2))=2;kk=kk+1; 
             end 
        end 
    end 
    k=k+kk; 
    end         
          
       
         if min(lf)<=d(i) 
             Tn{i}=find(lf<d(i)); 
           a=randperm(length(Tn{i})); 
            f1(i,Tn{i}(a(1)))=1;wt(i)=0; 
         else                     

                b=find(lf(:)==min(lf)); 
               f1(i,b)=1;wt(i)=min(lf)-d(i); 
         end        
    fff=f1(i,:); 
    tlf=[lf f1(i,:) d(i) ft(i) wt(i)]; 
    plf=[plf;tlf]; 
                   
end 
ttts=sort([d'+ft'+wt']); 
Td=[[1:N]' d'];Ts=[[1:N]' ttts]; 
plot(Td(:,2),Td(:,1))  
title('arrival/blue+left/red') 
xlabel('time/m') 
ylabel('number/vehicle') 
hold on 
plot(Ts(:,2),Ts(:,1),'r') 
tss=cumsum(S(:,2)).*60; 
for i=1:3 
    hold on 

plot([tss(i) tss(i)],[0 N],'g') 
end 
axis([0,4000,0,8000]) 



 

47 

plot([11*60 11*60],[0 N],'r') 
Pwait=mean(wt)  
stayti=[d' d'+wt' d'+wt'+ft']; 
  

for t=1:ceil(d(end)) 
       L(t)=0; 
 for i=1:N 
     if stayti(i,1)~=stayti(i,2)&&stayti(i,1)<=t&&stayti(i,2)>=t 
         L(t)=L(t)+1; 
       end 
 end 
end 
  
  
PTL=mean(L) 
  
   
PL(1)=mean(L(1:ts1*60)); 
PL(2)=mean(L(ts1*60+1:(ts1+ts2)*60)); 
PL(3)=mean(L((ts1+ts2)*60+1:(ts1+ts2+ts3)*60)); 
PL 
figure(2) 
hold on 
plot(L) 

title('queue length') 
xlabel('time/m') 
ylabel('number/vihicle') 
  
myRecord(n).list = L 
T = struct2table(myRecord) 
End 
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B. QUEUE DISPERSION SIMULATION PROGRAM 

myRecord = struct('list',[]) 
  
for n=1:100 (100 is the simulation run times) 
 
lam= truck arrival time interval (Seconds), changed with different 
scenarios;  
u=single gate service rate (Seconds), fixed; 
  
r1=0.5*lam (Decrease the truck arrival time interval to increase the 
queue length over-saturated at the first hour);tr1=1; 
r2=lam;tr2=time to be simulated; 
r3=lam;tr3=0; 
r4=lam;tr4=0; 
 
s1=Number of gates, changed with different scenarios;ts1= 1 (First hour 
to increase the queue length over-saturated); 
s2= Number of gates, changed with different scenarios;ts2=0; 
s3= Number of gates, changed with different scenarios;ts3=0;  
s4= Number of gates, changed with different scenarios;ts3=0; 
 
R=[ r1 tr1; 
   r2 tr2; 
   r3 tr3; 
   r4 tr4]; 
S=[s1 ts1; 
    s2 ts2; 
    s3 ts3; 
    s4 ts4]; 
  
dddt=[]; 
rn=length(R(:,1)); 
for i=1:rn 
    dt{i}=[]; 
end 
  
for i=1:rn 

    while sum(dt{i})<R(i,2)*60 
    dt{i}=[dt{i} exprnd(R(i,1),1,1)]; 
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    end 
end 
  
for i=1:rn 

    dddt=[dddt dt{i}]; 
end 
d=cumsum(dddt); 
N=length(d); 
wt=zeros(1,N); 
mm=zeros(1,s1); 
sn=length(S(:,1)); 
plf=[]; 
  
ft=exprnd(u,1,N); 
f1=zeros(length(d),s1); 
for i=1:s1 
    f1(i,i)=1; 
end 
k=0;kk=0; 
for i=s1+1:N 
     
    llf=[]; 
    lf=zeros(1,s1); 
  

    if d(i)>(ts1+ts2)*60 
            e=find(f1(i-1,:)==2); 
              for ii=1:N 
                f1(ii,e)=0; 
              end 
        end 
    for j=1:s1 
        if max(f1(1:i-1,j))==0 
            %TTn{i}=[TTn{i} j]; 
            lf(j)=0; 
        elseif max(f1(1:i-1,j))==1 
        mm(j)=max(find(f1(1:i-1,j)==1)); 
         
        lf(j)=d(mm(j))+ft(mm(j))+wt(mm(j)); 
        elseif max(f1(1:i-1,j))==2 %==2 
             lf(j)=inf; 
        end 
       
          if lf(j)==0&&k<s1-s2&&d(i)>ts1*60&&d(i)<(ts1+ts2)*60 

          k=k+1;  
          for ii=1:N 
                f1(ii,j)=2; 
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            end 
          end 
         
        if lf(j)>0&&lf(j)<d(i)&&k<s1-s2&&d(i)>ts1*60&&d(i)<(ts1+ts2)*60 

               k=k+1; 
          for ii=1:N 
                f1(ii,j)=2; 
            end 
          end 
        
         if lf(j)>d(i)&&k<s1-s2&&d(i)>ts1*60&&d(i)<(ts1+ts2)*60 
            llf=[llf ;[lf(j) j]]; 
             
            %lllf=[llf' j] 
         end 
           
    end 
    if length(llf)~=0 
    slf=sortrows(llf,1); 
    if k<s1-s2 
        for jj=1:s1-s2-k 
             for ii=1:N 
              f1(ii,slf(jj,2))=2;kk=kk+1; 
             end 

        end 
    end 
    k=k+kk; 
    end         
          
       
         if min(lf)<=d(i) 
             Tn{i}=find(lf<d(i)); 
           a=randperm(length(Tn{i})); 
            f1(i,Tn{i}(a(1)))=1;wt(i)=0; 
         else                     
                b=find(lf(:)==min(lf)); 
               f1(i,b)=1;wt(i)=min(lf)-d(i); 
         end        
    fff=f1(i,:); 
    tlf=[lf f1(i,:) d(i) ft(i) wt(i)]; 
    plf=[plf;tlf]; 
                   
    %if i==301 break;end; 

end 
ttts=sort([d'+ft'+wt']); 
Td=[[1:N]' d'];Ts=[[1:N]' ttts]; 
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%subplot(1,2,1) 
plot(Td(:,2),Td(:,1))  
title('arrival/blue+left/red') 
xlabel('time/m') 

ylabel('number/vehicle') 
hold on 
%subplot(1,2,2) 
plot(Ts(:,2),Ts(:,1),'r') 
tss=cumsum(S(:,2)).*60; 
%plot(wt) 
Pwait=mean(wt)  
stayti=[d' d'+wt' d'+wt'+ft']; 
  
for t=1:ceil(d(end)) 
    L(t)=0; 
 for i=1:N 
     if stayti(i,1)~=stayti(i,2)&&stayti(i,1)<=t&&stayti(i,2)>=t 
         L(t)=L(t)+1; 
     end 
 end 
end 
  
PTL=mean(L) 
  

   
PL(1)=mean(L(1:ts1*60)); 
PL(2)=mean(L(ts1*60+1:(ts1+ts2)*60)); 
PL(3)=mean(L((ts1+ts2)*60+1:(ts1+ts2+ts3)*60)); 
PL 
figure(2) 
hold on 
plot(L) 
title('queue length') 
xlabel('time/m') 
ylabel('number/vihicle') 
  
myRecord(n).list = L 
T = struct2table(myRecord) 
end   
 

 


	Structure Bookmarks
	 
	 
	 
	 
	 
	 
	Figure

	Center for Advanced Multimodal Mobility 
	Center for Advanced Multimodal Mobility 
	Solutions and Education 




	Span
	 
	 
	Project ID: 2020 Project 13 
	 
	 
	 
	A New Method for Estimating Truck Queue Length at Marine Terminal Gates 
	 
	Final Report 
	 
	 
	by 
	 
	 
	Yi Qi, Ph.D., P.E. (ORCID ID: 
	Yi Qi, Ph.D., P.E. (ORCID ID: 
	https://orcid.org/0000-0002-6314-2626
	https://orcid.org/0000-0002-6314-2626

	)  

	Professor and Chair, Department of Transportation Studies 
	Texas Southern University 
	TECH 215B, 3100 Cleburne Ave, Houston, TX 77004  
	Phone: 1-713-313-6809; Email: 
	Phone: 1-713-313-6809; Email: 
	Yi.Qi@tsu.edu
	Yi.Qi@tsu.edu

	  

	 
	Tao Tao (ORCID ID: 
	Tao Tao (ORCID ID: 
	https://orcid.org/0000-0002-9215-022X
	https://orcid.org/0000-0002-9215-022X

	)  

	Research Assistant, Department of Transportation Studies  
	Texas Southern University 
	TECH 259, 3100 Cleburne Ave, Houston, TX 77004  
	Phone: 1-713-313-1854; Email: 
	Phone: 1-713-313-1854; Email: 
	Tao.Tao@TSU.EDU
	Tao.Tao@TSU.EDU

	  

	 
	Qun Zhao (ORCID ID: 
	Qun Zhao (ORCID ID: 
	https://orcid.org/0000-0003-3760-9234
	https://orcid.org/0000-0003-3760-9234

	) 

	Research Associate, Department of Transportation Studies  
	Texas Southern University 
	TECH 208, 3100 Cleburne Ave, Houston, TX 77004  
	Phone: 1-713-313-1854; Email: 
	Phone: 1-713-313-1854; Email: 
	qun.zhao@tsu.edu
	qun.zhao@tsu.edu

	 

	 
	 
	Mehdi Azimi, Ph.D., P.E. (ORCID ID: 
	Mehdi Azimi, Ph.D., P.E. (ORCID ID: 
	https://orcid.org/0000-0001-5678-0323
	https://orcid.org/0000-0001-5678-0323

	)  

	Assistant Professor, Department of Transportation Studies 
	Texas Southern University 
	Phone: 1-713-313-1293; Email: 
	Phone: 1-713-313-1293; Email: 
	Mehdi.Azimi@tsu.edu
	Mehdi.Azimi@tsu.edu

	 

	 
	Wenrui Qu, Ph.D. (ORCID ID: 
	Wenrui Qu, Ph.D. (ORCID ID: 
	https://orcid.org/ 0000-0003-4139-3544
	https://orcid.org/ 0000-0003-4139-3544

	) 

	Associate Professor, School of Mathematics and Statistics,  
	Qilu University of Technology (Shandong Academy of Sciences) 
	Phone:011-86-13173006561; Email: quwenrui601@163.com 
	 
	for 
	 
	Center for Advanced Multimodal Mobility Solutions and Education  
	(CAMMSE @ UNC Charlotte) 
	The University of North Carolina at Charlotte 
	9201 University City Blvd  
	Charlotte, NC 28223 
	 
	 
	August 2021 
	 
	  
	ACKNOWLEDGEMENTS 
	 
	This project was funded by the Center for Advanced Multimodal Mobility Solutions and Education (CAMMSE @ UNC Charlotte), one of the Tier I University Transportation Centers that were selected in this nationwide competition, by the Office of the Assistant Secretary for Research and Technology (OST-R), U.S. Department of Transportation (US DOT), under the FAST Act. The authors are also very grateful for all of the time and effort spent by DOT and industry professionals to provide project information that was 
	 
	 
	 
	DISCLAIMER 
	 
	The contents of this report reflect the views of the authors, who are solely responsible for the facts and the accuracy of the material and information presented herein. This document is disseminated under the sponsorship of the U.S. Department of Transportation University Transportation Centers Program [and other SPONSOR/PARTNER] in the interest of information exchange. The U.S. Government [and other SPONSOR/PARTNER] assumes no liability for the contents or use thereof. The contents do not necessarily refl
	 
	 
	 
	 
	  
	 
	 
	Table of Contents 
	Table of Contents 
	EXECUTIVE SUMMARY ........................................................................................................ xii
	EXECUTIVE SUMMARY ........................................................................................................ xii
	EXECUTIVE SUMMARY ........................................................................................................ xii

	 

	Chapter 1. Introduction...............................................................................................................14
	Chapter 1. Introduction...............................................................................................................14
	Chapter 1. Introduction...............................................................................................................14

	 

	1.1 Problem Statement ...............................................................................................................14
	1.1 Problem Statement ...............................................................................................................14
	1.1 Problem Statement ...............................................................................................................14

	 

	1.2 Objectives ............................................................................................................................16
	1.2 Objectives ............................................................................................................................16
	1.2 Objectives ............................................................................................................................16

	 

	1.3 Report Overview ..................................................................................................................16
	1.3 Report Overview ..................................................................................................................16
	1.3 Report Overview ..................................................................................................................16

	 

	Chapter 2. Literature Review .....................................................................................................17
	Chapter 2. Literature Review .....................................................................................................17
	Chapter 2. Literature Review .....................................................................................................17

	 

	2.1 Introduction ..........................................................................................................................17
	2.1 Introduction ..........................................................................................................................17
	2.1 Introduction ..........................................................................................................................17

	 

	2.2 Fluid Flow Models ...............................................................................................................17
	2.2 Fluid Flow Models ...............................................................................................................17
	2.2 Fluid Flow Models ...............................................................................................................17

	 

	2.3 Queueing Models .................................................................................................................18
	2.3 Queueing Models .................................................................................................................18
	2.3 Queueing Models .................................................................................................................18

	 

	2.4 Simulation-based Models.....................................................................................................19
	2.4 Simulation-based Models.....................................................................................................19
	2.4 Simulation-based Models.....................................................................................................19

	 

	2.5 Simulation-based Regression Models ..................................................................................20
	2.5 Simulation-based Regression Models ..................................................................................20
	2.5 Simulation-based Regression Models ..................................................................................20

	 

	2.6 Summary ..............................................................................................................................21
	2.6 Summary ..............................................................................................................................21
	2.6 Summary ..............................................................................................................................21

	 

	Chapter 3. Methodology ..............................................................................................................22
	Chapter 3. Methodology ..............................................................................................................22
	Chapter 3. Methodology ..............................................................................................................22

	 

	3.1 Step 1- Estimating the Steady Queue Length ......................................................................22
	3.1 Step 1- Estimating the Steady Queue Length ......................................................................22
	3.1 Step 1- Estimating the Steady Queue Length ......................................................................22

	 

	3.2 Step 2 - Modeling the Queue Formation and Dispersion Processes ....................................24
	3.2 Step 2 - Modeling the Queue Formation and Dispersion Processes ....................................24
	3.2 Step 2 - Modeling the Queue Formation and Dispersion Processes ....................................24

	 

	3.3 Step 3 - Development of the Final Model ............................................................................34
	3.3 Step 3 - Development of the Final Model ............................................................................34
	3.3 Step 3 - Development of the Final Model ............................................................................34

	 

	3.4 Summary ..............................................................................................................................36
	3.4 Summary ..............................................................................................................................36
	3.4 Summary ..............................................................................................................................36

	 

	Chapter 4. A Case Study .............................................................................................................38
	Chapter 4. A Case Study .............................................................................................................38
	Chapter 4. A Case Study .............................................................................................................38

	 

	4.1 Simulation Scenario Design .................................................................................................38
	4.1 Simulation Scenario Design .................................................................................................38
	4.1 Simulation Scenario Design .................................................................................................38

	 

	4.2 Case Study Results ...............................................................................................................38
	4.2 Case Study Results ...............................................................................................................38
	4.2 Case Study Results ...............................................................................................................38

	 

	Discussions ................................................................................................................................40
	Discussions ................................................................................................................................40
	Discussions ................................................................................................................................40

	 

	Chapter 5. Conclusions and Recommendations ........................................................................41
	Chapter 5. Conclusions and Recommendations ........................................................................41
	Chapter 5. Conclusions and Recommendations ........................................................................41

	 

	References .....................................................................................................................................42
	References .....................................................................................................................................42
	References .....................................................................................................................................42

	 

	Appendix .......................................................................................................................................44
	Appendix .......................................................................................................................................44
	Appendix .......................................................................................................................................44

	 

	A. QUEUE FORMATION SIMULATION PROGRAM ..........................................................44
	A. QUEUE FORMATION SIMULATION PROGRAM ..........................................................44
	A. QUEUE FORMATION SIMULATION PROGRAM ..........................................................44

	 

	B. QUEUE DISPERSION SIMULATION PROGRAM...........................................................48
	B. QUEUE DISPERSION SIMULATION PROGRAM...........................................................48
	B. QUEUE DISPERSION SIMULATION PROGRAM...........................................................48

	 

	 

	  
	List of Figures 
	List of Figures 
	Figure 1. International maritime trade tendency ........................................................................... 14
	Figure 1. International maritime trade tendency ........................................................................... 14
	Figure 1. International maritime trade tendency ........................................................................... 14

	 

	Figure 2. Truck congestion at terminal gate in the Bayport Ingate .............................................. 15
	Figure 2. Truck congestion at terminal gate in the Bayport Ingate .............................................. 15
	Figure 2. Truck congestion at terminal gate in the Bayport Ingate .............................................. 15

	 

	Figure 3. Quantity of fluid and time in fluid flow queue diagram ................................................ 18
	Figure 3. Quantity of fluid and time in fluid flow queue diagram ................................................ 18
	Figure 3. Quantity of fluid and time in fluid flow queue diagram ................................................ 18

	 

	Figure 4. Flowchart of the modeling method ................................................................................ 22
	Figure 4. Flowchart of the modeling method ................................................................................ 22
	Figure 4. Flowchart of the modeling method ................................................................................ 22

	 

	Figure 5. Simulation results for an example scenario (S = 20 and 
	Figure 5. Simulation results for an example scenario (S = 20 and 
	Figure 5. Simulation results for an example scenario (S = 20 and 
	= 19) ................................. 26
	InlineShape

	 

	Figure 6. Estimation of the Queue Length for the Queue Formation State .................................. 35
	Figure 6. Estimation of the Queue Length for the Queue Formation State .................................. 35
	Figure 6. Estimation of the Queue Length for the Queue Formation State .................................. 35

	 

	Figure 7. Model Flowchart ........................................................................................................... 37
	Figure 7. Model Flowchart ........................................................................................................... 37
	Figure 7. Model Flowchart ........................................................................................................... 37

	 

	Figure 8. Estimated Truck Queue Lengths by Different Models for the Case Study ................... 39
	Figure 8. Estimated Truck Queue Lengths by Different Models for the Case Study ................... 39
	Figure 8. Estimated Truck Queue Lengths by Different Models for the Case Study ................... 39

	 

	 

	  
	List of Tables 
	List of Tables 
	Table 1. Regression models for the Queue Formation State ........................................................ 28
	Table 1. Regression models for the Queue Formation State ........................................................ 28
	Table 1. Regression models for the Queue Formation State ........................................................ 28

	 

	Table 2. Regression models for the Queue Dispersion State ........................................................ 31
	Table 2. Regression models for the Queue Dispersion State ........................................................ 31
	Table 2. Regression models for the Queue Dispersion State ........................................................ 31

	 

	 

	 
	  
	  
	 
	 

	EXECUTIVE SUMMARY
	EXECUTIVE SUMMARY
	 

	 
	 
	As international trade and freight volumes increase, there is a growing port congestion problem, leading to the long truck queues at US marine terminal gates. To address this problem, some countermeasures have been proposed and implemented for reducing truck queue length at marine terminals. To assess the effectiveness of these countermeasures, a method for accurately estimating terminal gate truck queue length is needed.  
	This study developed a new method, named the state-dependent approximation method, for estimating the truck queue length at marine terminals. Based on the simulation of the truck queuing system, it was found that it takes several hours for the truck queue length to reach its steady-state, and neglecting the queue formation (queue dispersion) processes will cause overestimation (underestimation) of truck queue length. The developed model can take into account the queue formation and dispersion processes, and
	 
	 
	 
	 
	  
	  
	Chapter 1.  Introduction
	Chapter 1.  Introduction
	 

	1.1 Problem Statement 
	Container marine terminals are the places where most of the world’s goods are transferred. With over 80% of global trade by volume and more than 70% of its value being carried onboard ships and handled by seaports worldwide, the importance of maritime transport for trade and development cannot be overemphasized. According to the report from United Nations Conference on Trade and Development (UNCTAD, 2018), shown as Figure 1, maritime trade has grown at a compound annual rate of 4% over the past decade, the 
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	Figure 1. International maritime trade tendency 
	(Unit: Millions of tons loaded) 
	(Source: UNCTAD, 2018) 
	  
	The growth in international maritime trade has resulted in the roadway transportation systems of metropolitan areas, especially around the major generators that are ports, airports, rail yards, and industrial areas causing congestion and delays, the congestion even extends to the surrounding networks of roads (Figure 2). In addition, this situation seriously hampers the smooth operation of ports and other nearby businesses, resulting in huge economic losses. The environmental effects resulting from idling t
	increase the complexity of marine terminals related planning and operational control problems.  
	  
	 
	Figure
	Figure 2. Truck congestion at terminal gate in the Bayport Ingate 
	(Source: Port of Houston, 2019) 
	 
	Marine terminals are usually located in or near major cities, where right of way is limited and very expensive. Implementing operational strategies to reduce the effect of the terminals’ truck related traffic on the surrounding roadway network and the terminal operations is generally more feasible than physical capacity expansions. The increased container volumes required to be handled by marine terminals in optimum time highlight the need for the development of innovative countermeasures at a strategic, ta
	 
	To assess the effectiveness of these countermeasures, a method is needed that can accurately estimate the truck queue length at terminal gates. The existing methods, such as queuing models and fluid flow models, have limitations and cannot provide accurate estimates of the truck queue length when certain conditions exist. For example, the traditional queuing models cannot handle oversaturated situations (when demand exceeds capacity), which occur often during peak hours at marine terminals. Note that, the c
	the conditions are changed. Therefore, if the queue formation and dispersion processes are neglected, inaccurate queue length estimation will be produced.    
	1.2 Objectives 
	To fill these gaps, this study is to develop a new method, named the state-dependent approximation method, for estimating the truck queue length at marine terminals by using the simulation-based, regression-modeling approach. The proposed new method considers both the queue formation and dispersion processes and can also estimate the truck queue length caused by short-term system oversaturation at marine terminals. Therefore, it can provide a more robust and better estimation of truck queue length at marine
	1.3 Report Overview 
	The remainder of this report is organized as follows: Chapter 2 introduces the existing studies that used both analytical and simulation approaches for analyzing the marine terminal gates congestion. Chapter 3 presents a three-step methodology for truck queue length estimations under different conditions. Chapter 4 presents a case study to evaluate the accuracy of the developed model and discusses the results of this study. In the end, the conclusions and recommendations are summarized in Chapter 5 
	 
	 

	Chapter 2.  Literature Review
	Chapter 2.  Literature Review
	 

	2.1 Introduction 
	The existing studies used both analytical and simulation approaches to analyze the congestion at the container terminal gates. Some of them focus on the estimation of the truck queue length and waiting time at the terminal gates (Yoon, 2007; Guan, 2009; Minh and Huynh, 2017; and Chen and Yang, 2014). Some studies analyzed the impacts of vehicle queue length on the approach roads to the container terminals (Grubisic et al., 2020; and Preston et al., 2020). Some studies investigated different operational stra
	2.2 Fluid Flow Models 
	Fluid flow models have been used to model many types of queues such as telecommunication queues and vehicle queues at roadway intersections. It follows the flow balance principle, meaning the change in a queue equals to flow-in minus flow-out, which can be mathematically expressed as follows 
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	 is the average queue length in the time interval [0, t]; 
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	 is the average arrival rate in the time interval [0, t]; 
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	 is the average service rate in the time interval [0, t]. 
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	Martonosi (2011) used fluid flow model to study dynamically switch servers between the two queues in order to minimize the total waiting time. In this paper, the basic idea of fluid flow model is illustrated as Figure 3.  
	  
	 
	 
	Figure
	Figure 3. Quantity of fluid and time in fluid flow queue diagram 
	(Source: Martonosi, 2011) 
	According to Figure 3, the queue length is the difference between the cumulative arrivals (upper curve) and services (lower curve). Compare with other methods, this method is simple and easy to use. Most importantly, it can estimate the queue length in both under-saturated and oversaturated conditions. However, this method is deterministic in nature because it assumes uniform arrival and service rates and cannot take account of the queue caused by the random fluctuations in the arrival rate or the variation
	 
	2.3 Queueing Models 
	Two types of queuing models, i.e., stationary and non-stationary models, have been used in modeling the length of the queue of trucks at the gates of marine terminals.  The stationary queuing models are based on the classical queueing theory, which estimates the length of the steady state queue at given service and arrival rates.  These models are useful for determining the steady state performance of a queuing system.  Yoon (2007) used M/M/1 and M/M/S queuing models to estimate the delay of the truck as co
	or dispersion process can take up to 24 hours (Chen and Yang, 2014). As a result, the stationary queuing models can not accurately estimate the time-varying truck queue lengths at marine terminals.  In addition, the queuing models cannot handle oversaturated situations, which often occur at congested marine terminals where demand exceeds capacity during peak hours.  
	To address the problem of time-varying queue length Chen et al. (2011) used a non-stationary queuing model to estimate the truck queue lengths at ports.  In their model, a time-dependent capacity utilization ratio was used to estimate the time-dependent length of the queue.  This time-dependent capacity utilization ratio was derived using the steady state queue-length equation of the stationary queuing model, which is based on the assumption of an undersaturated queuing system.  As a result, this model is n
	2.4 Simulation-based Models 
	Numerous studies have used simulation models to investigate the problem of truck congestion at marine terminals. In these studies, the discrete-event simulation and agent-based simulation are two major approaches.  
	• Discrete-event simulation 
	• Discrete-event simulation 
	• Discrete-event simulation 


	Discreet-event simulation is one of the most popular techniques in port operation modeling (Dragović et al., 2017). Azab & Eltawil (2016) used a discrete event simulation model FlexSim to study the problem of long Truck Turn Times (TTTs) for external trucks at marine container terminals.  In this study, special simulation software for container terminal operations was used to estimate the TTTs and the maximum truck queue lengths for different arrival patterns.  Derse and Gocmen (2018) used ARENA, a discrete
	• Agent-based simulation 
	• Agent-based simulation 
	• Agent-based simulation 


	An agent-based model is another common type of approach for simulating the port operation.  Karafa et al. used an agent-based simulation PARAMICS to investigate the effectiveness of the truck appointment system, as well as extending gate hours. Sherif et al. (2011) used an agent-based simulation and solutions by EI Farol model to achieve the steady arrival of trucks and hence less queuing at congestion at port terminal gates. Fleming et al. (2013) used agent-based simulation to model the terminal gate syste
	The use of simulation models is an effective approach for investigating the queuing process because it takes into account the random fluctuations in the arrival and service rates, and these models can provide estimates of the queue lengths for various scenarios. The limitations of the simulation-based approach are that 1) conducting the simulation is time-consuming and 2) the results of simulation studies cannot be applied easily to new scenarios that have yet to be simulated.  To overcome this problem, an 
	2.5 Simulation-based Regression Models 
	Simulation-based regression models have been developed in several previous studies for modeling the truck queue length at marine terminals.  In these studies, a simulation model was developed that could be used initially to simulate the operations at marine terminals and derive the truck queue lengths for different scenarios.  Then, based on the results of the simulation, regression models were developed and used to estimate the truck queue lengths in different scenarios.  Thus, the regression models are us
	 
	Pham et al. (2011) evaluated the suitability of four predictive models capable of dealing with fuzzy data: multiple linear regression, fuzzy regression, clustering fuzzy regression, and support vector machines. The advantage is that the distributions of the truck inter-arrival time and truck processing time are not required in these models. The independent variables include gate congestion level, time of day, day of the week, month of the year, weather condition, queue length, gate processing time, and truc
	 
	 Chen and Yang (2014) used a microscopic traffic simulation tool, PARAMIC, to simulate a container terminal system and observe the truck queuing process.  In their 
	study, they pointed out that “a queue cannot reach its steady state instantaneously,” and, according to its simulation results, it can take up to 24 hours for the queue to reach a steady length. Based on this finding, the truck queue length was estimated separately for two different states, i.e., 1) the queue formation state and 2) steady state. For “steady state,” a stationary queuing model, M/G/S, is used to estimate the steady queue length according to the arrival and service rates.  For the queue format
	 
	2.6 Summary 
	Based on the literature review, it can be concluded that the existing methods used to estimate truck queue length at the marine terminal gate have their limitations and cannot provide accurate truck queue length estimation under certain conditions.  
	The fluid flow model is simple and easy to use. Most importantly, it can estimate the queue length in both under-saturated and oversaturated conditions. However, this method is deterministic in nature because it assumes uniform arrival and service rates and cannot take account of the queue caused by the random fluctuations in the arrival rate or the variations in the service time. Consequently, the fluid flow method tends to underestimate the queue length. 
	Stationary queuing models are useful for determining the steady-state performance of a queuing system. But the major problem is that the queue formation and dispersion process was neglected. In addition, these models cannot handle oversaturated situations, which often occur at congested marine terminals where demand exceeds the capacity during peak hours. As a result, the stationary queuing models can not accurately estimate the time-varying truck queue lengths at marine terminals.  
	Nonstationary queueing models are proposed and used to estimate the queue lengths at varying arrival and service rates. However, since most of the Nonstationary queueing models are developed based on the stationary queuing models, thereby inheriting the same problems of the stationary queueing model. For example, most of them cannot be used to estimate queue length under the oversaturated condition.  
	Simulation models are effective for investigating the queue formation process because they can take account of the random fluctuations in the arrival and service rates and can provide queue length estimation for various scenarios. However, it can only provide the estimation for the specific case and time-consuming. Most importantly, the results of the simulation studies are limited by the designed scenarios and they cannot be easily applied to new scenarios that have not to be simulated yet. 
	 The new method that we proposed in this study is a type of simulation-based regression model.  
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	This research was conducted to develop a new method, named state-dependent approximation method, for estimating truck queue length at marine terminals.  The model was developed based on the method proposed by Chen and Yang (2014), but it expanded two critical aspects of their work.  First, both queue formation and dispersion processes have been considered in the estimation of truck queue length. Thus, the truck queue length was estimated separately for four different states: I) steady-state, II) queue forma
	This model was developed in three steps, i.e., 1) estimating the steady queue length, 2) modeling the queue formation and dispersion processes, and 3) developing the final model. This three-step method is illustrated in Figure 4.  
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	Figure 4. Flowchart of the modeling method 
	 
	 

	3.1 Step 1- Estimating the Steady Queue Length  
	 
	In this step, a multi-server (M/M/S) queuing model was used to estimate the steady-state length of the queue of trucks. A marine terminal gate system that has multiple 
	inbound and outbound gates can be treated as a multi-server queuing system. In this queuing system, it is assumed that 1) the number of parallel servers (S) is the number of gate booths, 2) the truck arrival rate (number of trucks arriving per hour) follows a Poisson distribution (M), and 3) the service time for each gate follows an exponential distribution (M).  Under these assumptions, the system utilization factor (
	inbound and outbound gates can be treated as a multi-server queuing system. In this queuing system, it is assumed that 1) the number of parallel servers (S) is the number of gate booths, 2) the truck arrival rate (number of trucks arriving per hour) follows a Poisson distribution (M), and 3) the service time for each gate follows an exponential distribution (M).  Under these assumptions, the system utilization factor (
	) is given by the following equation:   
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	Where λ is the average truck-arrival rate (average number of trucks arriving per hour), 
	Where λ is the average truck-arrival rate (average number of trucks arriving per hour), 
	is the service capacity of a terminal gate, µ is the average service rate per gate booth (average number of trucks that can be served per hour per gate booth), and S is the number of gate booths. 
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	Then, according to the M/M/S queuing model, the steady state of the truck queue length (the average number of trucks in the queue) can be estimated by the following equation: 
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	where 
	 is referred to as traffic density (Guan, 2009), and 
	 is the probability that no trucks are in the queue (
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	According to Equations 2 and 3, the steady queue length, L, is a function of
	According to Equations 2 and 3, the steady queue length, L, is a function of
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	 is a function of α and S. Therefore, the steady queue length L can be viewed as a function with only two variables 
	 is a function of α and S. Therefore, the steady queue length L can be viewed as a function with only two variables 
	and S as follows: 
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	Equation 5 shows that L can be determined once the values of α and S are given.   
	3.2 Step 2 - Modeling the Queue Formation and Dispersion Processes 
	 
	A simulation-based regression modeling approach was used to model the formation and dispersion processes of the queue.  Initially, a queuing simulation model was developed to simulate the queue formation and dispersion processes in different scenarios.  Based on the simulation results, a set of regression models was developed for estimating the average truck queue length at a particular moment of the queue formation and dispersion processes. 
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	A queuing simulation model was developed using MATLAB. In the simulation, the arrival time of a truck and the truck service time is determined according to the random numbers generated from two exponential distributions.  The parameters of these two exponential distributions were set according to the truck arrival rate and the gate service rate.   The simulation time is set enough long (up to 60 hours) to allow the queue to reach its steady state.  Since the steady queue is only determined by two variables,
	A queuing simulation model was developed using MATLAB. In the simulation, the arrival time of a truck and the truck service time is determined according to the random numbers generated from two exponential distributions.  The parameters of these two exponential distributions were set according to the truck arrival rate and the gate service rate.   The simulation time is set enough long (up to 60 hours) to allow the queue to reach its steady state.  Since the steady queue is only determined by two variables,
	) and the number of gate booths (S), different simulation scenarios were designed by varying these two variables. In this study, based on an interview with managers at a marine terminal in the Houston area, S was set from 2 to 21, which is the range of the number of gate booths that usually are open at marine terminals.  The value of 
	was set according to S because 
	 is equal to 
	 and there are some constraints on the value of 
	.  First, to reach a steady-state, the system utilization factor (
	) should be less than 1.  Second, 
	 should not be very small, otherwise, the steady queue length will be very short and can be reached instantaneously.  Using the trial-and-error method, the minimum value of 
	 was set as 0.75.  Thus, 
	 varies from 0.75 to 1.  For the design of the simulation scenarios, the value of 
	 varies from 0.75 to 0.95 in 0.05 increments.  Since 
	 is equal to 
	,  the value of 
	 varies from 0.75S to 0.95S in 0.05S increments.  As listed in Tables 1 and 2, 95 different simulation scenarios were designed by varying the two variables, S and 
	.  Note that, in the real-world application, if 
	 is not equal to the values listed in Tables 1 and 2, the interpolated method could be used for deriving the estimated queue length 
	.  
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	Since the simulation is driven by stochastic factors, for each designed simulation scenario, 500 simulation runs were conducted for both the queue formation and queue 
	dispersion processes. The simulated lengths of the queue were averaged, and the average queue lengths showed a clearly-developed trend (Figure 2).  Figure 2(a) is the simulation result for the queue formation process for an example scenario (S = 20 and 
	dispersion processes. The simulated lengths of the queue were averaged, and the average queue lengths showed a clearly-developed trend (Figure 2).  Figure 2(a) is the simulation result for the queue formation process for an example scenario (S = 20 and 
	= 19), and Figure 2(b) is the simulation result for the queue dispersion process for the same scenario.   Note that, the initial queue length is set at 0 for the queue formation process, and for the queue dispersion process, the initial queue is generated by doubling the arrival rate to make the system oversaturated for the first hour. In Figure 2a (Figure 2b), the queue length continues increasing (decreasing) until it reaches a steady-state, then it fluctuates slightly within a range.  In Figure 2, the cr
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	Figure 2a. Queue formation process 
	Figure 2a. Queue formation process 
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	Figure 2b. Queue dispersion process 
	Figure 2b. Queue dispersion process 
	Figure 2b. Queue dispersion process 




	Figure 5. Simulation results for an example scenario (S = 20 and 
	Figure 5. Simulation results for an example scenario (S = 20 and 
	= 19) 

	 
	• Development of Regression Models 
	• Development of Regression Models 
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	Based on the simulation results, regression models were developed for estimating the queue length at a particular moment of queue formation or queue dispersion state.  
	 For the queue-formation state, it was found that the natural logarithm curve fit the simulated queuing curve well (Figure 2.a).  Therefore, the following regression model used by Chen and Yang (2014) was used for modeling the queue length during the queue formation state:  
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	where t is the time interval, lt is the queue length at t, and 
	where t is the time interval, lt is the queue length at t, and 
	and 
	 are the coefficients for the regression model for the queue formation state.   
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	For the queue dispersion state, it was found that the natural exponential curve fit the simulated queue formation curve better (Figure 2.b). Therefore, the regression model for the queue dispersion stage is:  
	        
	        
	                       (7) 
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	 where t is the time interval, lt is the queue length at t, and 
	 where t is the time interval, lt is the queue length at t, and 
	 and 
	are the coefficients for the regression model for the queue dispersion state.   
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	For each simulation scenario, the simulated queue lengths before reaching the critical point were used to develop the regression model. The modeling results for different simulation scenarios for both the queue formation state and the queue dispersion state are presented in Tables 1 and 2, respectively. 
	 
	  
	Table 1. Regression models for the Queue Formation State  
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	0.75 

	0.73 
	0.73 

	0.2205 
	0.2205 

	0.6503 
	0.6503 

	0.8114 
	0.8114 

	0.654 
	0.654 


	TR
	12 
	12 

	0.8 
	0.8 

	1.12 
	1.12 

	0.3466 
	0.3466 

	1.0322 
	1.0322 

	0.8212 
	0.8212 

	1.2768 
	1.2768 


	TR
	12.75 
	12.75 

	0.85 
	0.85 

	1.60 
	1.60 

	0.6317 
	0.6317 

	1.8434 
	1.8434 

	0.8081 
	0.8081 

	2.5326 
	2.5326 


	TR
	13.5 
	13.5 

	0.9 
	0.9 

	2.42 
	2.42 

	1.4169 
	1.4169 

	3.6617 
	3.6617 

	0.9183 
	0.9183 

	5.4237 
	5.4237 


	TR
	14.25 
	14.25 

	0.95 
	0.95 

	7.35 
	7.35 

	3.1303 
	3.1303 

	6.9993 
	6.9993 

	0.9426 
	0.9426 

	14.9522 
	14.9522 




	 
	  
	Table 1. Regression models for the Queue Formation State (continued)  
	 
	 
	 
	 
	 
	 
	SIMULATION SCENARIOS  
	 
	 

	SIMULATION RESULTS 
	SIMULATION RESULTS 

	STEADY QUEUE LENGTH (L) 
	STEADY QUEUE LENGTH (L) 
	ESTIMATED BY THE QUEUING MODEL 



	TBody
	TR
	Time to Reach Steady State (hours) 
	Time to Reach Steady State (hours) 

	Regression Models 
	Regression Models 
	, 
	, 

	[0, critical point] 
	[0, critical point] 



	S 
	S 
	S 

	α=λ/µ 
	α=λ/µ 

	TD
	P
	Span
	 


	 
	 

	 
	 
	 


	 
	 
	 


	R2 
	R2 

	 
	 


	 
	 
	 
	 
	16 

	12 
	12 

	0.75 
	0.75 

	0.42 
	0.42 

	0.2439 
	0.2439 

	0.7567 
	0.7567 

	0.803 
	0.803 

	0.6137 
	0.6137 


	TR
	12.8 
	12.8 

	0.8 
	0.8 

	1.25 
	1.25 

	0.3464 
	0.3464 

	0.9659 
	0.9659 

	0.8382 
	0.8382 

	1.2195 
	1.2195 


	TR
	13.6 
	13.6 

	0.85 
	0.85 

	1.58 
	1.58 

	0.7098 
	0.7098 

	1.9418 
	1.9418 

	0.8792 
	0.8792 

	2.4549 
	2.4549 


	TR
	14.4 
	14.4 

	0.9 
	0.9 

	2.65 
	2.65 

	1.1969 
	1.1969 

	3.2778 
	3.2778 

	0.8887 
	0.8887 

	5.3221 
	5.3221 


	TR
	15.2 
	15.2 

	0.95 
	0.95 

	6.63 
	6.63 

	3.0118 
	3.0118 

	6.8217 
	6.8217 

	0.8988 
	0.8988 

	14.8237 
	14.8237 


	 
	 
	 
	 
	17 

	12.75 
	12.75 

	0.75 
	0.75 

	0.48 
	0.48 

	0.1942 
	0.1942 

	0.6021 
	0.6021 

	0.8205 
	0.8205 

	0.5766 
	0.5766 


	TR
	13.6 
	13.6 

	0.8 
	0.8 

	0.6 
	0.6 

	0.4233 
	0.4233 

	1.2191 
	1.2191 

	0.8212 
	0.8212 

	1.166 
	1.166 


	TR
	14.45 
	14.45 

	0.85 
	0.85 

	0.98 
	0.98 

	0.8053 
	0.8053 

	2.295 
	2.295 

	0.8393 
	0.8393 

	2.3814 
	2.3814 


	TR
	15.3 
	15.3 

	0.9 
	0.9 

	1.37 
	1.37 

	1.4246 
	1.4246 

	3.6318 
	3.6318 

	0.8559 
	0.8559 

	5.225 
	5.225 


	TR
	16.15 
	16.15 

	0.95 
	0.95 

	5.25 
	5.25 

	3.0934 
	3.0934 

	7.5561 
	7.5561 

	0.9274 
	0.9274 

	14.6998 
	14.6998 


	 
	 
	 
	 
	18 

	13.5 
	13.5 

	0.75 
	0.75 

	0.88 
	0.88 

	0.1533 
	0.1533 

	0.416 
	0.416 

	0.8008 
	0.8008 

	0.5424 
	0.5424 


	TR
	14.4 
	14.4 

	0.8 
	0.8 

	1.13 
	1.13 

	0.3182 
	0.3182 

	0.9613 
	0.9613 

	0.8383 
	0.8383 

	1.1158 
	1.1158 


	TR
	15.3 
	15.3 

	0.85 
	0.85 

	1.98 
	1.98 

	0.5366 
	0.5366 

	1.5367 
	1.5367 

	0.8158 
	0.8158 

	2.3116 
	2.3116 


	TR
	16.2 
	16.2 

	0.9 
	0.9 

	2.23 
	2.23 

	1.424 
	1.424 

	3.6836 
	3.6836 

	0.9046 
	0.9046 

	5.132 
	5.132 


	TR
	17.1 
	17.1 

	0.95 
	0.95 

	7.73 
	7.73 

	2.982 
	2.982 

	6.5964 
	6.5964 

	0.9253 
	0.9253 

	14.5802 
	14.5802 


	 
	 
	 
	 
	 
	19 

	14.25 
	14.25 

	0.75 
	0.75 

	0.45 
	0.45 

	0.1746 
	0.1746 

	0.5408 
	0.5408 

	0.8011 
	0.8011 

	0.5107 
	0.5107 


	TR
	15.2 
	15.2 

	0.8 
	0.8 

	0.95 
	0.95 

	0.2895 
	0.2895 

	0.8024 
	0.8024 

	0.8018 
	0.8018 

	1.0687 
	1.0687 


	TR
	16.15 
	16.15 

	0.85 
	0.85 

	1.62 
	1.62 

	0.5357 
	0.5357 

	1.6298 
	1.6298 

	0.8033 
	0.8033 

	2.2452 
	2.2452 


	TR
	17.1 
	17.1 

	0.9 
	0.9 

	1.87 
	1.87 

	1.4706 
	1.4706 

	3.6424 
	3.6424 

	0.8992 
	0.8992 

	5.0427 
	5.0427 


	TR
	18.05 
	18.05 

	0.95 
	0.95 

	5.10 
	5.10 

	3.4827 
	3.4827 

	7.2951 
	7.2951 

	0.8815 
	0.8815 

	14.4646 
	14.4646 


	 
	 
	 
	 
	 
	20 

	15 
	15 

	0.75 
	0.75 

	0.82 
	0.82 

	0.1604 
	0.1604 

	0.4685 
	0.4685 

	0.8288 
	0.8288 

	0.4813 
	0.4813 


	TR
	16 
	16 

	0.8 
	0.8 

	0.90 
	0.90 

	0.3403 
	0.3403 

	0.9435 
	0.9435 

	0.8851 
	0.8851 

	1.0243 
	1.0243 


	TR
	17 
	17 

	0.85 
	0.85 

	1.03 
	1.03 

	0.7324 
	0.7324 

	1.9957 
	1.9957 

	0.8866 
	0.8866 

	2.182 
	2.182 


	TR
	18 
	18 

	0.9 
	0.9 

	2.55 
	2.55 

	1.3591 
	1.3591 

	3.6086 
	3.6086 

	0.9178 
	0.9178 

	4.9569 
	4.9569 


	TR
	19 
	19 

	0.95 
	0.95 

	7.27 
	7.27 

	3.2908 
	3.2908 

	7.4617 
	7.4617 

	0.973 
	0.973 

	14.3526 
	14.3526 




	 
	 
	  
	 
	Table 2. Regression models for the Queue Dispersion State 
	 
	 
	 
	 
	 
	 
	SIMULATION SCENARIOS  
	 
	 

	SIMULATION RESULTS 
	SIMULATION RESULTS 

	STEADY QUEUE LENGTH (L) 
	STEADY QUEUE LENGTH (L) 
	ESTIMATED BY THE QUEUING MODEL 



	TBody
	TR
	Time to Reach Steady State (hours) 
	Time to Reach Steady State (hours) 

	Regression Models 
	Regression Models 
	 
	 
	InlineShape

	 
	 
	[0, critical point] 



	S 
	S 
	S 

	α=λ/µ 
	α=λ/µ 

	TD
	P
	Span
	 


	 
	 

	 
	 
	 
	InlineShape


	 
	 
	 
	InlineShape


	R2 
	R2 

	 
	 


	 
	 
	 
	 
	2 

	1.5 
	1.5 

	0.75 
	0.75 

	4.63 
	4.63 

	50.531 
	50.531 

	-0.556 
	-0.556 

	0.958 
	0.958 

	2.0887 
	2.0887 


	TR
	1.6 
	1.6 

	0.8 
	0.8 

	5.75 
	5.75 

	55.791 
	55.791 

	-0.374 
	-0.374 

	0.9476 
	0.9476 

	3.1263 
	3.1263 


	TR
	1.7 
	1.7 

	0.85 
	0.85 

	6.27 
	6.27 

	60.379 
	60.379 

	-0.312 
	-0.312 

	0.9549 
	0.9549 

	4.9888 
	4.9888 


	TR
	1.8 
	1.8 

	0.9 
	0.9 

	9.6 
	9.6 

	41.318 
	41.318 

	-0.154 
	-0.154 

	0.9482 
	0.9482 

	9.1168 
	9.1168 


	TR
	1.9 
	1.9 

	0.95 
	0.95 

	8.77 
	8.77 

	35.441 
	35.441 

	-0.033 
	-0.033 

	0.9644 
	0.9644 

	24.9526 
	24.9526 


	 
	 
	 
	 
	3 

	2.25 
	2.25 

	0.75 
	0.75 

	6.42 
	6.42 

	25.521 
	25.521 

	-0.354 
	-0.354 

	0.983 
	0.983 

	1.7033 
	1.7033 


	TR
	2.4 
	2.4 

	0.8 
	0.8 

	7.18 
	7.18 

	30.236 
	30.236 

	-0.311 
	-0.311 

	0.9925 
	0.9925 

	2.5888 
	2.5888 


	TR
	2.55 
	2.55 

	0.85 
	0.85 

	12.08 
	12.08 

	29.767 
	29.767 

	-0.156 
	-0.156 

	0.9806 
	0.9806 

	4.1388 
	4.1388 


	TR
	2.7 
	2.7 

	0.9 
	0.9 

	11.92 
	11.92 

	29.163 
	29.163 

	-0.11 
	-0.11 

	0.9675 
	0.9675 

	7.3535 
	7.3535 


	TR
	2.85 
	2.85 

	0.95 
	0.95 

	18.80 
	18.80 

	36.081 
	36.081 

	-0.038 
	-0.038 

	0.9678 
	0.9678 

	17.2332 
	17.2332 


	 
	 
	 
	 
	4 

	3 
	3 

	0.75 
	0.75 

	6.92 
	6.92 

	27.618 
	27.618 

	-0.42 
	-0.42 

	0.9177 
	0.9177 

	1.5283 
	1.5283 


	TR
	3.2 
	3.2 

	0.8 
	0.8 

	7.58 
	7.58 

	37.039 
	37.039 

	-0.331 
	-0.331 

	0.9554 
	0.9554 

	2.3857 
	2.3857 


	TR
	3.4 
	3.4 

	0.85 
	0.85 

	11.82 
	11.82 

	32.651 
	32.651 

	-0.163 
	-0.163 

	0.9561 
	0.9561 

	3.9061 
	3.9061 


	TR
	3.6 
	3.6 

	0.9 
	0.9 

	13.97 
	13.97 

	41.887 
	41.887 

	-0.14 
	-0.14 

	0.9879 
	0.9879 

	7.0898 
	7.0898 


	TR
	3.8 
	3.8 

	0.95 
	0.95 

	22.08 
	22.08 

	40.224 
	40.224 

	-0.04 
	-0.04 

	0.9618 
	0.9618 

	16.937 
	16.937 


	 
	 
	 
	 
	5 

	3.75 
	3.75 

	0.75 
	0.75 

	4.25 
	4.25 

	72.619 
	72.619 

	-0.749 
	-0.749 

	0.9958 
	0.9958 

	1.3854 
	1.3854 


	TR
	4 
	4 

	0.8 
	0.8 

	7.70 
	7.70 

	51.92 
	51.92 

	-0.382 
	-0.382 

	0.9817 
	0.9817 

	2.2165 
	2.2165 


	TR
	4.25 
	4.25 

	0.85 
	0.85 

	10.98 
	10.98 

	42.781 
	42.781 

	-0.216 
	-0.216 

	0.9697 
	0.9697 

	3.7087 
	3.7087 


	TR
	4.5 
	4.5 

	0.9 
	0.9 

	19.08 
	19.08 

	56.259 
	56.259 

	-0.146 
	-0.146 

	0.997 
	0.997 

	6.8624 
	6.8624 


	TR
	4.75 
	4.75 

	0.95 
	0.95 

	32.05 
	32.05 

	52.407 
	52.407 

	-0.038 
	-0.038 

	0.9475 
	0.9475 

	16.6782 
	16.6782 


	 
	 
	 
	 
	6 

	4.5 
	4.5 

	0.75 
	0.75 

	5.27 
	5.27 

	67.538 
	67.538 

	-0.661 
	-0.661 

	0.9705 
	0.9705 

	1.265 
	1.265 


	TR
	4.8 
	4.8 

	0.8 
	0.8 

	5.53 
	5.53 

	92.815 
	92.815 

	-0.567 
	-0.567 

	0.9943 
	0.9943 

	2.0711 
	2.0711 


	TR
	5.1 
	5.1 

	0.85 
	0.85 

	8.78 
	8.78 

	68.927 
	68.927 

	-0.316 
	-0.316 

	0.9835 
	0.9835 

	3.5363 
	3.5363 


	TR
	5.4 
	5.4 

	0.9 
	0.9 

	14.83 
	14.83 

	64.509 
	64.509 

	-0.155 
	-0.155 

	0.9706 
	0.9706 

	6.6611 
	6.6611 


	TR
	5.7 
	5.7 

	0.95 
	0.95 

	29.23 
	29.23 

	66.985 
	66.985 

	-0.047 
	-0.047 

	0.9644 
	0.9644 

	16.4462 
	16.4462 


	 
	 
	 
	 
	7 

	5.25 
	5.25 

	0.75 
	0.75 

	4.18 
	4.18 

	124.81 
	124.81 

	-0.881 
	-0.881 

	0.9956 
	0.9956 

	1.1614 
	1.1614 


	TR
	5.6 
	5.6 

	0.8 
	0.8 

	6.02 
	6.02 

	97.331 
	97.331 

	-0.538 
	-0.538 

	0.9976 
	0.9976 

	1.9438 
	1.9438 


	TR
	5.95 
	5.95 

	0.85 
	0.85 

	8.73 
	8.73 

	80.81 
	80.81 

	-0.324 
	-0.324 

	0.9898 
	0.9898 

	3.3829 
	3.3829 


	TR
	6.3 
	6.3 

	0.9 
	0.9 

	14.07 
	14.07 

	74.345 
	74.345 

	-0.17 
	-0.17 

	0.9765 
	0.9765 

	6.4796 
	6.4796 


	TR
	6.65 
	6.65 

	0.95 
	0.95 

	28.75 
	28.75 

	76.732 
	76.732 

	-0.054 
	-0.054 

	0.9862 
	0.9862 

	16.2346 
	16.2346 


	 
	 
	 
	 
	8 

	6 
	6 

	0.75 
	0.75 

	4.62 
	4.62 

	126.31 
	126.31 

	-0.866 
	-0.866 

	0.9863 
	0.9863 

	1.0709 
	1.0709 


	TR
	6.4 
	6.4 

	0.8 
	0.8 

	5.97 
	5.97 

	115.53 
	115.53 

	-0.616 
	-0.616 

	0.9829 
	0.9829 

	1.8306 
	1.8306 


	TR
	6.8 
	6.8 

	0.85 
	0.85 

	11.25 
	11.25 

	83.517 
	83.517 

	-0.292 
	-0.292 

	0.9581 
	0.9581 

	3.2446 
	3.2446 


	TR
	7.2 
	7.2 

	0.9 
	0.9 

	17.43 
	17.43 

	72.575 
	72.575 

	-0.149 
	-0.149 

	0.9393 
	0.9393 

	6.3138 
	6.3138 


	TR
	7.6 
	7.6 

	0.95 
	0.95 

	34.92 
	34.92 

	75.575 
	75.575 

	-0.047 
	-0.047 

	0.9315 
	0.9315 

	16.0392 
	16.0392 




	Table 2. Regression models for the Queue Dispersion State (continued) 
	 
	 
	 
	 
	 
	 
	SIMULATION SCENARIOS  
	 
	 

	SIMULATION RESULTS 
	SIMULATION RESULTS 

	STEADY QUEUE LENGTH (L) 
	STEADY QUEUE LENGTH (L) 
	ESTIMATED BY THE QUEUING MODEL 



	TBody
	TR
	Time to Reach Steady State (hours) 
	Time to Reach Steady State (hours) 

	Regression Models 
	Regression Models 
	 
	 

	 
	 
	[0, critical point] 



	S 
	S 
	S 

	α=λ/µ 
	α=λ/µ 

	TD
	P
	Span
	 


	 
	 

	 
	 
	 


	 
	 
	 


	R2 
	R2 

	 
	 


	 
	 
	 
	 
	9 

	6.75 
	6.75 

	0.75 
	0.75 

	4.20 
	4.20 

	177.73 
	177.73 

	-0.998 
	-0.998 

	0.9922 
	0.9922 

	0.9911 
	0.9911 


	TR
	7.2 
	7.2 

	0.8 
	0.8 

	6.45 
	6.45 

	137.85 
	137.85 

	-0.607 
	-0.607 

	0.9901 
	0.9901 

	1.7289 
	1.7289 


	TR
	7.65 
	7.65 

	0.85 
	0.85 

	8.67 
	8.67 

	137.89 
	137.89 

	-0.392 
	-0.392 

	0.9885 
	0.9885 

	3.1184 
	3.1184 


	TR
	8.1 
	8.1 

	0.9 
	0.9 

	15.32 
	15.32 

	101.44 
	101.44 

	-0.169 
	-0.169 

	0.9911 
	0.9911 

	6.1608 
	6.1608 


	TR
	8.55 
	8.55 

	0.95 
	0.95 

	35.42 
	35.42 

	86.844 
	86.844 

	-0.054 
	-0.054 

	0.9277 
	0.9277 

	15.8571 
	15.8571 


	 
	 
	 
	 
	10 

	7.5 
	7.5 

	0.75 
	0.75 

	3.90 
	3.90 

	265.81 
	265.81 

	-1.146 
	-1.146 

	0.9836 
	0.9836 

	0.9198 
	0.9198 


	TR
	8 
	8 

	0.8 
	0.8 

	7.12 
	7.12 

	107.05 
	107.05 

	-0.553 
	-0.553 

	0.9458 
	0.9458 

	1.6367 
	1.6367 


	TR
	8.5 
	8.5 

	0.85 
	0.85 

	9.90 
	9.90 

	129.26 
	129.26 

	-0.367 
	-0.367 

	0.9877 
	0.9877 

	3.0025 
	3.0025 


	TR
	9 
	9 

	0.9 
	0.9 

	15.22 
	15.22 

	117.91 
	117.91 

	-0.198 
	-0.198 

	0.9758 
	0.9758 

	6.0186 
	6.0186 


	TR
	9.5 
	9.5 

	0.95 
	0.95 

	32.78 
	32.78 

	100.6 
	100.6 

	-0.061 
	-0.061 

	0.953 
	0.953 

	15.6861 
	15.6861 


	 
	 
	 
	 
	11 

	8.25 
	8.25 

	0.75 
	0.75 

	3.70 
	3.70 

	284.37 
	284.37 

	-1.148 
	-1.148 

	0.9889 
	0.9889 

	0.8559 
	0.8559 


	TR
	8.8 
	8.8 

	0.8 
	0.8 

	5.32 
	5.32 

	231.85 
	231.85 

	-0.755 
	-0.755 

	0.9896 
	0.9896 

	1.5526 
	1.5526 


	TR
	9.35 
	9.35 

	0.85 
	0.85 

	6.70 
	6.70 

	219.81 
	219.81 

	-0.499 
	-0.499 

	0.9753 
	0.9753 

	2.8953 
	2.8953 


	TR
	9.9 
	9.9 

	0.9 
	0.9 

	15.17 
	15.17 

	137.11 
	137.11 

	-0.209 
	-0.209 

	0.9741 
	0.9741 

	5.8855 
	5.8855 


	TR
	10.45 
	10.45 

	0.95 
	0.95 

	29.57 
	29.57 

	133.38 
	133.38 

	-0.071 
	-0.071 

	0.9899 
	0.9899 

	15.5247 
	15.5247 


	 
	 
	 
	 
	12 

	9 
	9 

	0.75 
	0.75 

	4.13 
	4.13 

	271.04 
	271.04 

	-1.113 
	-1.113 

	0.9902 
	0.9902 

	0.7981 
	0.7981 


	TR
	9.6 
	9.6 

	0.8 
	0.8 

	4.63 
	4.63 

	312.35 
	312.35 

	-0.851 
	-0.851 

	0.978 
	0.978 

	1.4754 
	1.4754 


	TR
	10.2 
	10.2 

	0.85 
	0.85 

	7.58 
	7.58 

	220.06 
	220.06 

	-0.514 
	-0.514 

	0.9914 
	0.9914 

	2.7956 
	2.7956 


	TR
	10.8 
	10.8 

	0.9 
	0.9 

	17.50 
	17.50 

	148.27 
	148.27 

	-0.183 
	-0.183 

	0.9863 
	0.9863 

	5.7604 
	5.7604 


	TR
	11.4 
	11.4 

	0.95 
	0.95 

	41.03 
	41.03 

	121.17 
	121.17 

	-0.05 
	-0.05 

	0.9747 
	0.9747 

	15.3715 
	15.3715 


	 
	 
	 
	 
	13 

	9.75 
	9.75 

	0.75 
	0.75 

	3.45 
	3.45 

	432.01 
	432.01 

	-1.319 
	-1.319 

	0.9833 
	0.9833 

	0.7456 
	0.7456 


	TR
	10.4 
	10.4 

	0.8 
	0.8 

	4.75 
	4.75 

	385.6 
	385.6 

	-0.932 
	-0.932 

	0.9632 
	0.9632 

	1.4041 
	1.4041 


	TR
	11.05 
	11.05 

	0.85 
	0.85 

	9.90 
	9.90 

	161.9 
	161.9 

	-0.391 
	-0.391 

	0.9725 
	0.9725 

	2.7024 
	2.7024 


	TR
	11.7 
	11.7 

	0.9 
	0.9 

	17.72 
	17.72 

	142.81 
	142.81 

	-0.193 
	-0.193 

	0.9597 
	0.9597 

	5.6422 
	5.6422 


	TR
	12.35 
	12.35 

	0.95 
	0.95 

	29.63 
	29.63 

	161.87 
	161.87 

	-0.079 
	-0.079 

	0.996 
	0.996 

	15.2255 
	15.2255 


	 
	 
	 
	 
	14 

	10.5 
	10.5 

	0.75 
	0.75 

	5.02 
	5.02 

	304.29 
	304.29 

	-1.03 
	-1.03 

	0.9794 
	0.9794 

	0.6978 
	0.6978 


	TR
	11.2 
	11.2 

	0.8 
	0.8 

	6.68 
	6.68 

	271.54 
	271.54 

	-0.723 
	-0.723 

	0.984 
	0.984 

	1.3381 
	1.3381 


	TR
	11.9 
	11.9 

	0.85 
	0.85 

	7.57 
	7.57 

	298.36 
	298.36 

	-0.545 
	-0.545 

	0.9852 
	0.9852 

	2.6149 
	2.6149 


	TR
	12.6 
	12.6 

	0.9 
	0.9 

	13.53 
	13.53 

	222.01 
	222.01 

	-0.257 
	-0.257 

	0.9934 
	0.9934 

	5.5302 
	5.5302 


	TR
	13.3 
	13.3 

	0.95 
	0.95 

	41.00 
	41.00 

	138.27 
	138.27 

	-0.059 
	-0.059 

	0.9536 
	0.9536 

	15.086 
	15.086 


	 
	 
	 
	 
	15 

	11.25 
	11.25 

	0.75 
	0.75 

	3.72 
	3.72 

	617.23 
	617.23 

	-1.422 
	-1.422 

	0.979 
	0.979 

	0.654 
	0.654 


	TR
	12 
	12 

	0.8 
	0.8 

	4.98 
	4.98 

	456.57 
	456.57 

	-0.913 
	-0.913 

	0.9754 
	0.9754 

	1.2768 
	1.2768 


	TR
	12.75 
	12.75 

	0.85 
	0.85 

	8.88 
	8.88 

	294.79 
	294.79 

	-0.509 
	-0.509 

	0.9774 
	0.9774 

	2.5326 
	2.5326 


	TR
	13.5 
	13.5 

	0.9 
	0.9 

	14.73 
	14.73 

	226.94 
	226.94 

	-0.241 
	-0.241 

	0.993 
	0.993 

	5.4237 
	5.4237 


	TR
	14.25 
	14.25 

	0.95 
	0.95 

	31.60 
	31.60 

	183.47 
	183.47 

	-0.079 
	-0.079 

	0.9893 
	0.9893 

	14.9522 
	14.9522 




	 
	 
	 
	  
	Table 2. Regression models for the Queue Dispersion State (continued) 
	 
	 
	 
	 
	 
	 
	SIMULATION SCENARIOS  
	 
	 

	SIMULATION RESULTS 
	SIMULATION RESULTS 

	STEADY QUEUE LENGTH (L) 
	STEADY QUEUE LENGTH (L) 
	ESTIMATED BY THE QUEUING MODEL 



	TBody
	TR
	Time to Reach Steady State (hours) 
	Time to Reach Steady State (hours) 

	Regression Models 
	Regression Models 
	 
	 

	 
	 
	[0, critical point] 



	S 
	S 
	S 

	α=λ/µ 
	α=λ/µ 

	TD
	P
	Span
	 


	 
	 

	 
	 
	 


	 
	 
	 


	R2 
	R2 

	 
	 


	 
	 
	 
	 
	16 

	12 
	12 

	0.75 
	0.75 

	3.85 
	3.85 

	732.51 
	732.51 

	-1.466 
	-1.466 

	0.9841 
	0.9841 

	0.6137 
	0.6137 


	TR
	12.8 
	12.8 

	0.8 
	0.8 

	5.90 
	5.90 

	489.43 
	489.43 

	-0.932 
	-0.932 

	0.966 
	0.966 

	1.2195 
	1.2195 


	TR
	13.6 
	13.6 

	0.85 
	0.85 

	8.87 
	8.87 

	287.2 
	287.2 

	-0.492 
	-0.492 

	0.9914 
	0.9914 

	2.4549 
	2.4549 


	TR
	14.4 
	14.4 

	0.9 
	0.9 

	18.60 
	18.60 

	184.76 
	184.76 

	-0.198 
	-0.198 

	0.9679 
	0.9679 

	5.3221 
	5.3221 


	TR
	15.2 
	15.2 

	0.95 
	0.95 

	30.10 
	30.10 

	184.7 
	184.7 

	-0.084 
	-0.084 

	0.9778 
	0.9778 

	14.8237 
	14.8237 


	 
	 
	 
	 
	17 

	12.75 
	12.75 

	0.75 
	0.75 

	2.98 
	2.98 

	1170.4 
	1170.4 

	-1.729 
	-1.729 

	0.9471 
	0.9471 

	0.5766 
	0.5766 


	TR
	13.6 
	13.6 

	0.8 
	0.8 

	5.12 
	5.12 

	535.09 
	535.09 

	-0.978 
	-0.978 

	0.9812 
	0.9812 

	1.166 
	1.166 


	TR
	14.45 
	14.45 

	0.85 
	0.85 

	9.28 
	9.28 

	341.81 
	341.81 

	-0.512 
	-0.512 

	0.9855 
	0.9855 

	2.3814 
	2.3814 


	TR
	15.3 
	15.3 

	0.9 
	0.9 

	16.57 
	16.57 

	223.38 
	223.38 

	-0.237 
	-0.237 

	0.9685 
	0.9685 

	5.225 
	5.225 


	TR
	16.15 
	16.15 

	0.95 
	0.95 

	32.15 
	32.15 

	200.15 
	200.15 

	-0.087 
	-0.087 

	0.9683 
	0.9683 

	14.6998 
	14.6998 


	 
	 
	 
	 
	18 

	13.5 
	13.5 

	0.75 
	0.75 

	6.42 
	6.42 

	394.83 
	394.83 

	-0.893 
	-0.893 

	0.9717 
	0.9717 

	0.5424 
	0.5424 


	TR
	14.4 
	14.4 

	0.8 
	0.8 

	8.38 
	8.38 

	403.93 
	403.93 

	-0.607 
	-0.607 

	0.9779 
	0.9779 

	1.1158 
	1.1158 


	TR
	15.3 
	15.3 

	0.85 
	0.85 

	8.85 
	8.85 

	382.43 
	382.43 

	-0.528 
	-0.528 

	0.9823 
	0.9823 

	2.3116 
	2.3116 


	TR
	16.2 
	16.2 

	0.9 
	0.9 

	14.15 
	14.15 

	280.58 
	280.58 

	-0.278 
	-0.278 

	0.989 
	0.989 

	5.132 
	5.132 


	TR
	17.1 
	17.1 

	0.95 
	0.95 

	40.57 
	40.57 

	187.95 
	187.95 

	-0.07 
	-0.07 

	0.9521 
	0.9521 

	14.5802 
	14.5802 


	 
	 
	 
	 
	 
	19 

	14.25 
	14.25 

	0.75 
	0.75 

	4.05 
	4.05 

	849.63 
	849.63 

	-1.469 
	-1.469 

	0.9886 
	0.9886 

	0.5107 
	0.5107 


	TR
	15.2 
	15.2 

	0.8 
	0.8 

	5.62 
	5.62 

	557.77 
	557.77 

	-0.954 
	-0.954 

	0.9703 
	0.9703 

	1.0687 
	1.0687 


	TR
	16.15 
	16.15 

	0.85 
	0.85 

	8.02 
	8.02 

	438.16 
	438.16 

	-0.579 
	-0.579 

	0.989 
	0.989 

	2.2452 
	2.2452 


	TR
	17.1 
	17.1 

	0.9 
	0.9 

	16.93 
	16.93 

	236.5 
	236.5 

	-0.239 
	-0.239 

	0.9463 
	0.9463 

	5.0427 
	5.0427 


	TR
	18.05 
	18.05 

	0.95 
	0.95 

	32.45 
	32.45 

	215.66 
	215.66 

	-0.086 
	-0.086 

	0.9759 
	0.9759 

	14.4646 
	14.4646 


	 
	 
	 
	 
	 
	20 

	15 
	15 

	0.75 
	0.75 

	3.37 
	3.37 

	1495.9 
	1495.9 

	-1.737 
	-1.737 

	0.9595 
	0.9595 

	0.4813 
	0.4813 


	TR
	16 
	16 

	0.8 
	0.8 

	4.35 
	4.35 

	791.51 
	791.51 

	-1.078 
	-1.078 

	0.9496 
	0.9496 

	1.0243 
	1.0243 


	TR
	17 
	17 

	0.85 
	0.85 

	7.23 
	7.23 

	547.25 
	547.25 

	-0.647 
	-0.647 

	0.9766 
	0.9766 

	2.182 
	2.182 


	TR
	18 
	18 

	0.9 
	0.9 

	13.47 
	13.47 

	367.4 
	367.4 

	-0.293 
	-0.293 

	0.9878 
	0.9878 

	4.9569 
	4.9569 


	TR
	19 
	19 

	0.95 
	0.95 

	35.17 
	35.17 

	241.27 
	241.27 

	-0.083 
	-0.083 

	0.9799 
	0.9799 

	14.3526 
	14.3526 




	 
	  
	3.3 Step 3 - Development of the Final Model  
	Based on the regression models that were developed, the truck queue length can be estimated separately for four different states, i.e., 1) steady state, 2) queue formation state, 3) queue dispersion state, and 4) oversaturated state. The basic modeling ideal can be described by the following step-by-step procedure.  
	 
	1. Check to determine whether or not the system is oversaturated. If the system utilization factor at time t, i.e.,
	1. Check to determine whether or not the system is oversaturated. If the system utilization factor at time t, i.e.,
	1. Check to determine whether or not the system is oversaturated. If the system utilization factor at time t, i.e.,
	1. Check to determine whether or not the system is oversaturated. If the system utilization factor at time t, i.e.,
	 , is equal to or greater than 1, then the system is oversaturated, which means the demand is greater than the capacity. In this case, a steady queue length cannot be reached, and the fluid flow model will be used to estimate the queue length as follows: 
	InlineShape
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	InlineShape

	2. If the system is not oversaturated, then, according to the traffic density (
	2. If the system is not oversaturated, then, according to the traffic density (
	2. If the system is not oversaturated, then, according to the traffic density (
	2. If the system is not oversaturated, then, according to the traffic density (
	) and the number of gate booths (S) at time t, the steady queue length at time t, i.e.,
	, can be estimated according to Equation 5. After that, according to the estimated queue length at the time interval t-1, i.e., 
	 , the state of the queuing process can be determined.  
	InlineShape
	InlineShape
	a. If 
	a. If 
	a. If 
	a. If 
	, it is at the queue formation state. Then, the regression models (see Equation 6) developed for the queue formation state (given in Table 1) will be used to estimate the length of the queue at time interval t. Figure 3 shows the basic idea for this step. According to the value of 
	, the time needed for the queue length to reach 
	 can be derived by the regression model at first. Then, by adding 1 time interval, the current queue length 
	, can be estimated by the regression model. This can be expressed mathematically as follows: 
	InlineShape
	InlineShape






	 (9) 
	 (9) 
	InlineShape

	where:  
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	In addition, since the estimated queue length will not exceed the steady length of the queue, then: 
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	= 3.2908ln(t) + 7.4617
	R² = 0.973

	b. If 
	b. If 
	b. If 
	b. If 
	, it is at the queue dispersion state, and the regression models (see Equation 7) developed for the queue dispersion state will be used to estimate the queue length at time interval t.  Similarly, the current queue length, 
	, can be estimated according to the value of 
	,  by the following equations: 
	InlineShape


	c. If 
	c. If 
	c. If 
	, it is at steady state, and then, the steady queue length 
	can be used for estimating 
	. Based on the modeling ideals described above, the overall model can be expressed mathematically as: 
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	Figure 6. Estimation of the Queue Length for the Queue Formation State 
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	3.4 Summary 
	In this Chapter, a state-dependent approximation method for estimating truck queue length at marine terminals was developed. First, the critical point (the time interval that reaches the queue steady-state) was identified for each scenario by conducting thousands of simulations. Total 95 different scenarios were designed to simulate the truck queuing system with varied truck arrival rates and gate service rates, the results showed that it takes several hours for the truck queue length to reach its steady-st
	 
	Figure
	Figure 7. Model Flowchart  
	  
	 
	Chapter 4.  A Case Study
	Chapter 4.  A Case Study
	 

	In this chapter, to evaluate the model that was developed, a case study was conducted to compare the accuracy of the model with other existing methods, including the fluid flow model, the M/M/S queuing model, and the simulation-based regression model developed by Chen and Yang (2014), which is referred to as Chen (2014)’s model.  
	 
	4.1 Simulation Scenario Design 
	 
	A simulation-based numerical experiment was conducted to derive the simulated truck queue length at a maritime terminal where the truck arrival rate and the gate service rate vary throughout the day. It was assumed that the hourly truck arrival rate increased from 35 to 45 during the first 10 hours and decreased to 31 for the rest of the day.  To compare with Chen (2014)’s model, the number of gate booths S and the service rate µ (number of trucks that can be served per hour) were set the same as in Chen (2
	 
	4.2 Case Study Results 
	 
	The proposed modeling methods and the selected comparison models were applied to this case study to estimate the truck queue at the gate of this maritime terminal.  The modeling results and the results of other existing models are presented in Figure 5.  
	 
	 
	Figure
	Figure 8. Estimated Truck Queue Lengths by Different Models for the Case Study 
	 
	By comparing the simulated truck queue lengths with the queue lengths estimated by different models, the following key findings were obtained: 
	1. Overall, the proposed state-dependent approximation method outperformed the other modeling methods regarding the accuracy of the estimation. Other models either underestimated or overestimated the queue lengths. 
	1. Overall, the proposed state-dependent approximation method outperformed the other modeling methods regarding the accuracy of the estimation. Other models either underestimated or overestimated the queue lengths. 
	1. Overall, the proposed state-dependent approximation method outperformed the other modeling methods regarding the accuracy of the estimation. Other models either underestimated or overestimated the queue lengths. 

	2. The fluid flow model significantly underestimated the queue length because it neglected the random fluctuations in the arrival rate and the gate service rate. 
	2. The fluid flow model significantly underestimated the queue length because it neglected the random fluctuations in the arrival rate and the gate service rate. 

	3. The M/M/s queuing model cannot be used in the oversaturation condition (
	3. The M/M/s queuing model cannot be used in the oversaturation condition (
	3. The M/M/s queuing model cannot be used in the oversaturation condition (
	> 1), and it significantly overestimated the queue length for the queue formation state and significantly underestimated the queue length for the queue dispersion state.  


	4. Chen (2014)’s model had a comparable performance during the queue formation process.  However, it significantly underestimated the queue length during the queue dispersion process because this process was not considered in the model. 
	4. Chen (2014)’s model had a comparable performance during the queue formation process.  However, it significantly underestimated the queue length during the queue dispersion process because this process was not considered in the model. 


	 
	  
	Discussions 
	The proposed modeling method can estimate the truck queue length more accurately than the other four existing methods. It is because the truck queue length needs several hours to reach its steady-state and the developed model is the only model that can take account of both the queue formation and dispersion processes. In addition to the model estimation accuracy, the proposed model is more flexible and applicable than other models. First, it can be used for both undersaturated and oversaturated situations. 
	The proposed modeling method can estimate the truck queue length more accurately than the other four existing methods. It is because the truck queue length needs several hours to reach its steady-state and the developed model is the only model that can take account of both the queue formation and dispersion processes. In addition to the model estimation accuracy, the proposed model is more flexible and applicable than other models. First, it can be used for both undersaturated and oversaturated situations. 
	) and the number of gate booths (S), it can be used for marine terminals that have different numbers of gate booths and different gate services rates.   

	In term of the model applications, the developed model can be used for assessing the effectiveness of some countermeasures that reduce the terminal gate congestion by controlling the truck arrival rate (such as terminal appointment system), reducing the gate service time (such as using optical character recognition (OCR) technology and IT system) or increase the number of gate booths.  Besides, it can be used as a sketching tool to quickly estimate the truck queue lengths to help design the scenarios for si
	 
	 

	 
	 
	 

	Chapter 5.  Conclusions and Recommendations
	Chapter 5.  Conclusions and Recommendations
	 

	In this study, a state-dependent approximation method for estimating truck queue length at marine terminals was developed to fill the gaps in the existing methods. Based on the simulation of the truck queuing system, it was found that it takes several hours for the truck queue length to reach its steady-state, and neglecting the queue formation (queue dispersion) processes will cause overestimation (underestimation) of truck queue length. To address this problem, the proposed method takes account of both th
	 
	In this study, the proposed model was evaluated based on the simulation experiment results.  In the future, field data need to be collected at the maritime terminal gates to further verify the accuracy of the developed model.  In addition, more research can be conducted on the application of the developed model to optimize some operational strategies, such as the terminal appointment system, to minimize the truck queue length at the terminal gates 
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	APPENDIX
	APPENDIX
	 

	A. QUEUE FORMATION SIMULATION PROGRAM 
	myRecord = struct('list',[]) 
	  
	for n=1:100 (100 is the simulation run times) 
	 
	lam= truck arrival time interval (Seconds), changed with different scenarios;  
	u=single gate service rate (Seconds), fixed; 
	  
	r1=lam;tr1=time to be simulated; 
	r2=lam;tr2=0; 
	r3=lam;tr3=0; 
	 
	s1=Number of gates, changed with different scenarios;ts1= time to be simulated; 
	s2= Number of gates, changed with different scenarios;ts2=0; 
	s3= Number of gates, changed with different scenarios;ts3=0; 
	 
	R=[ r1 tr1; 
	   r2 tr2; 
	   r3 tr3]; 
	S=[s1 ts1; 
	    s2 ts2; 
	    s3 ts3]; 
	  
	dddt=[]; 
	rn=length(R(:,1)); 
	for i=1:rn 
	    dt{i}=[]; 
	end 
	  
	for i=1:rn 
	    while sum(dt{i})<R(i,2)*60 
	    dt{i}=[dt{i} exprnd(R(i,1),1,1)]; 
	    end 
	end 
	  
	for i=1:rn 
	    dddt=[dddt dt{i}]; 
	end 
	d=cumsum(dddt); 
	N=length(d); 
	wt=zeros(1,N); 
	mm=zeros(1,s1); 
	sn=length(S(:,1)); 
	plf=[]; 
	  
	ft=exprnd(u,1,N); 
	f1=zeros(length(d),s1); 
	for i=1:s1 
	    f1(i,i)=1; 
	end 
	k=0;kk=0; 
	for i=s1+1:N 
	     
	    llf=[]; 
	    lf=zeros(1,s1); 
	  
	    if d(i)>(ts1+ts2)*60 
	            e=find(f1(i-1,:)==2); 
	              for ii=1:N 
	                f1(ii,e)=0; 
	              end 
	        end 
	    for j=1:s1 
	        if max(f1(1:i-1,j))==0 
	            lf(j)=0; 
	        elseif max(f1(1:i-1,j))==1 
	        mm(j)=max(find(f1(1:i-1,j)==1)); 
	         
	        lf(j)=d(mm(j))+ft(mm(j))+wt(mm(j)); 
	        elseif max(f1(1:i-1,j))==2  
	             lf(j)=inf; 
	        end 
	       
	          if lf(j)==0&&k<s1-s2&&d(i)>ts1*60&&d(i)<(ts1+ts2)*60 
	          k=k+1;  
	          for ii=1:N 
	                f1(ii,j)=2; 
	            end 
	          end 
	         
	        if lf(j)>0&&lf(j)<d(i)&&k<s1-s2&&d(i)>ts1*60&&d(i)<(ts1+ts2)*60 
	               k=k+1; 
	          for ii=1:N 
	                f1(ii,j)=2; 
	            end 
	          end 
	        
	         if lf(j)>d(i)&&k<s1-s2&&d(i)>ts1*60&&d(i)<(ts1+ts2)*60 
	            llf=[llf ;[lf(j) j]]; 
	             
	         end 
	           
	    end 
	    if length(llf)~=0 
	    slf=sortrows(llf,1); 
	    if k<s1-s2 
	        for jj=1:s1-s2-k 
	             for ii=1:N 
	              f1(ii,slf(jj,2))=2;kk=kk+1; 
	             end 
	        end 
	    end 
	    k=k+kk; 
	    end         
	          
	       
	         if min(lf)<=d(i) 
	             Tn{i}=find(lf<d(i)); 
	           a=randperm(length(Tn{i})); 
	            f1(i,Tn{i}(a(1)))=1;wt(i)=0; 
	         else                     
	                b=find(lf(:)==min(lf)); 
	               f1(i,b)=1;wt(i)=min(lf)-d(i); 
	         end        
	    fff=f1(i,:); 
	    tlf=[lf f1(i,:) d(i) ft(i) wt(i)]; 
	    plf=[plf;tlf]; 
	                   
	end 
	ttts=sort([d'+ft'+wt']); 
	Td=[[1:N]' d'];Ts=[[1:N]' ttts]; 
	plot(Td(:,2),Td(:,1))  
	title('arrival/blue+left/red') 
	xlabel('time/m') 
	ylabel('number/vehicle') 
	hold on 
	plot(Ts(:,2),Ts(:,1),'r') 
	tss=cumsum(S(:,2)).*60; 
	for i=1:3 
	    hold on 
	plot([tss(i) tss(i)],[0 N],'g') 
	end 
	axis([0,4000,0,8000]) 
	plot([11*60 11*60],[0 N],'r') 
	Pwait=mean(wt)  
	stayti=[d' d'+wt' d'+wt'+ft']; 
	  
	for t=1:ceil(d(end)) 
	       L(t)=0; 
	 for i=1:N 
	     if stayti(i,1)~=stayti(i,2)&&stayti(i,1)<=t&&stayti(i,2)>=t 
	         L(t)=L(t)+1; 
	       end 
	 end 
	end 
	  
	  
	PTL=mean(L) 
	  
	   
	PL(1)=mean(L(1:ts1*60)); 
	PL(2)=mean(L(ts1*60+1:(ts1+ts2)*60)); 
	PL(3)=mean(L((ts1+ts2)*60+1:(ts1+ts2+ts3)*60)); 
	PL 
	figure(2) 
	hold on 
	plot(L) 
	title('queue length') 
	xlabel('time/m') 
	ylabel('number/vihicle') 
	  
	myRecord(n).list = L 
	T = struct2table(myRecord) 
	End 
	  
	B. QUEUE DISPERSION SIMULATION PROGRAM 
	myRecord = struct('list',[]) 
	  
	for n=1:100 (100 is the simulation run times) 
	 
	lam= truck arrival time interval (Seconds), changed with different scenarios;  
	u=single gate service rate (Seconds), fixed; 
	  
	r1=0.5*lam (Decrease the truck arrival time interval to increase the queue length over-saturated at the first hour);tr1=1; 
	r2=lam;tr2=time to be simulated; 
	r3=lam;tr3=0; 
	r4=lam;tr4=0; 
	 
	s1=Number of gates, changed with different scenarios;ts1= 1 (First hour to increase the queue length over-saturated); 
	s2= Number of gates, changed with different scenarios;ts2=0; 
	s3= Number of gates, changed with different scenarios;ts3=0;  
	s4= Number of gates, changed with different scenarios;ts3=0; 
	 
	R=[ r1 tr1; 
	   r2 tr2; 
	   r3 tr3; 
	   r4 tr4]; 
	S=[s1 ts1; 
	    s2 ts2; 
	    s3 ts3; 
	    s4 ts4]; 
	  
	dddt=[]; 
	rn=length(R(:,1)); 
	for i=1:rn 
	    dt{i}=[]; 
	end 
	  
	for i=1:rn 
	    while sum(dt{i})<R(i,2)*60 
	    dt{i}=[dt{i} exprnd(R(i,1),1,1)]; 
	    end 
	end 
	  
	for i=1:rn 
	    dddt=[dddt dt{i}]; 
	end 
	d=cumsum(dddt); 
	N=length(d); 
	wt=zeros(1,N); 
	mm=zeros(1,s1); 
	sn=length(S(:,1)); 
	plf=[]; 
	  
	ft=exprnd(u,1,N); 
	f1=zeros(length(d),s1); 
	for i=1:s1 
	    f1(i,i)=1; 
	end 
	k=0;kk=0; 
	for i=s1+1:N 
	     
	    llf=[]; 
	    lf=zeros(1,s1); 
	  
	    if d(i)>(ts1+ts2)*60 
	            e=find(f1(i-1,:)==2); 
	              for ii=1:N 
	                f1(ii,e)=0; 
	              end 
	        end 
	    for j=1:s1 
	        if max(f1(1:i-1,j))==0 
	            %TTn{i}=[TTn{i} j]; 
	            lf(j)=0; 
	        elseif max(f1(1:i-1,j))==1 
	        mm(j)=max(find(f1(1:i-1,j)==1)); 
	         
	        lf(j)=d(mm(j))+ft(mm(j))+wt(mm(j)); 
	        elseif max(f1(1:i-1,j))==2 %==2 
	             lf(j)=inf; 
	        end 
	       
	          if lf(j)==0&&k<s1-s2&&d(i)>ts1*60&&d(i)<(ts1+ts2)*60 
	          k=k+1;  
	          for ii=1:N 
	                f1(ii,j)=2; 
	            end 
	          end 
	         
	        if lf(j)>0&&lf(j)<d(i)&&k<s1-s2&&d(i)>ts1*60&&d(i)<(ts1+ts2)*60 
	               k=k+1; 
	          for ii=1:N 
	                f1(ii,j)=2; 
	            end 
	          end 
	        
	         if lf(j)>d(i)&&k<s1-s2&&d(i)>ts1*60&&d(i)<(ts1+ts2)*60 
	            llf=[llf ;[lf(j) j]]; 
	             
	            %lllf=[llf' j] 
	         end 
	           
	    end 
	    if length(llf)~=0 
	    slf=sortrows(llf,1); 
	    if k<s1-s2 
	        for jj=1:s1-s2-k 
	             for ii=1:N 
	              f1(ii,slf(jj,2))=2;kk=kk+1; 
	             end 
	        end 
	    end 
	    k=k+kk; 
	    end         
	          
	       
	         if min(lf)<=d(i) 
	             Tn{i}=find(lf<d(i)); 
	           a=randperm(length(Tn{i})); 
	            f1(i,Tn{i}(a(1)))=1;wt(i)=0; 
	         else                     
	                b=find(lf(:)==min(lf)); 
	               f1(i,b)=1;wt(i)=min(lf)-d(i); 
	         end        
	    fff=f1(i,:); 
	    tlf=[lf f1(i,:) d(i) ft(i) wt(i)]; 
	    plf=[plf;tlf]; 
	                   
	    %if i==301 break;end; 
	end 
	ttts=sort([d'+ft'+wt']); 
	Td=[[1:N]' d'];Ts=[[1:N]' ttts]; 
	%subplot(1,2,1) 
	plot(Td(:,2),Td(:,1))  
	title('arrival/blue+left/red') 
	xlabel('time/m') 
	ylabel('number/vehicle') 
	hold on 
	%subplot(1,2,2) 
	plot(Ts(:,2),Ts(:,1),'r') 
	tss=cumsum(S(:,2)).*60; 
	%plot(wt) 
	Pwait=mean(wt)  
	stayti=[d' d'+wt' d'+wt'+ft']; 
	  
	for t=1:ceil(d(end)) 
	    L(t)=0; 
	 for i=1:N 
	     if stayti(i,1)~=stayti(i,2)&&stayti(i,1)<=t&&stayti(i,2)>=t 
	         L(t)=L(t)+1; 
	     end 
	 end 
	end 
	  
	PTL=mean(L) 
	  
	   
	PL(1)=mean(L(1:ts1*60)); 
	PL(2)=mean(L(ts1*60+1:(ts1+ts2)*60)); 
	PL(3)=mean(L((ts1+ts2)*60+1:(ts1+ts2+ts3)*60)); 
	PL 
	figure(2) 
	hold on 
	plot(L) 
	title('queue length') 
	xlabel('time/m') 
	ylabel('number/vihicle') 
	  
	myRecord(n).list = L 
	T = struct2table(myRecord) 
	end   
	 
	 
	 




